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Résumé
La capacité de transport des câbles de puissance
dépend fortement du milieu environnant. Les
caractéristiques thermiques du sol sont un
paramétre critique qui cond itionne le risque de
migration d'humidité et d'emballement thermique,
Des remblais spéciaux peuvent remplacer
avantageusement le sol qui a été creusé,
Le texte ci-après présente des résultats comparatifs
à partir de quelques méthodes permettant de
calculer la résistance thermique externe T, lorsque
le sol n'est pas homogène,
Des données économiques peuvent dès lors être
utilisées pour un dimensionnement optimisé des
remblais , selon le critère du ratio entre puissance
transitée et coût global de la tranchée.

1. Heat t ransfer for buried cab le systems

Total losses generated in buried power cables flow
through the soil to the ground surface and are
dissipated into the atmosphère. The conductor
temperature rise of these cables is due for its major
part to the soil, and analysis to one factor sensitivity
studies show that the depth of 'Iaying and thermal
characteristics of the soil are critical pararneters.

Abstract
Ampacity of power cables is significantly dependent
on the surrounding medium. The thermal
characteristics of the soil is a critical parameter
increasing the risk of moisture migration and thermal
instability. Special backfills may be used to replace
advantageously the local excavated soll.
The following paper presents sorne comparative
results from a few methods to calculate external
thermal resistances T, when the soil is not
homogeneous.
Economical data may be introduced to lead to an
optimum design of backfills , according to a criterion
of ratio between cable ampacity and global cost of a
trench .

2. Cable sys tems in backfills

The computation of ampacities of cables systems in
backfills is a current practice . It applies to cables laid
in a well-conducting material to improve heat
dissipation and to ducts installed in layers of
concrete. In both configurations, the surroundings
are a material which has a different thermal
resistivity from that of the native solI.

We will consider the installation of three cables in flat
formation described in Electra #98 [4J.

Granular particles greatly affect the thermal
behaviour of the soil according to their constituents,
size distribution, density and moisture content.
Cavities between the more or less compacted
parlicles are filled with water or air, If the moisture
migrates from the soil, the therma l resistivity rises,
increasing thecable temperatùre and intensitying the
losses. It contributes to speed up moisture migration
and a thermal instab ility arises.
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Because thermal resistivities of minera i consliluents
and water are out of proportion with the one of air, it
is essential to maximise the amount of solid and
water. A high density due to compaction improves
the series of parallel paths in the global structure.
Therefore special backfills (selected sands,
stabilised or fluidised backfills) may be used to
replace the local excavated solI.
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ng.1 : Three cables ln a backfill, fiat formation



A Iist of symbols is given at the end of the document.

3. Superficiallayer

CIGRE WG02 of SC21 recommends in [4] a method
to calculate the effective external thermal resistance
of cables laid in a backfill. The heat path between
cable and soil surface contains regions having
different values of thermal resistivity, when the
conventional formulae given in IEC Publication
60287 [2] are based on the assumption of a single
value of thermal resistivity throughout the ground. In
the present paper, we added the feasibility of taking
into account an additional discontinuity of thermal
resistivity : a superficial layer of height H" is
considered. Il may represent the upper layer of the
soii exposed to solar radiation, of higher thermal
resistivity in summer when drying out of the soil
occurs.

4. Reference example

The well-known example of [4], illustrated by
figure 1, is aiso used for our calculations :

D. = 100 mm, S =120 mm,
L = 1450 mm, LG = 1350 mm,
W. =400 mm, H. =500 mm.

Original values of thermal resistivity of soil and
backfill (respectively 3,0 and 1,0 K.mlW) were
judged a Iittle high. We adopted values in common
use in France, in accordance with operating
conditions of [3] :

P. = 0,85 K.mlW, P. = 0,7 K.mlW.

We introduced a superficial layer of higher thermal
resistivity :

H" = 500 mm, P,' = 1,2 K.mlW.

This basic configuration is applied to compare
different methods of calculation, dealing with steady­
state thermal conditions. The singularity of discrete
changes of thermal resistivity is treated as a two
dimensional problem in a plane perpendicular to the
cable axis.

5. An iterat ive solution in a transformed plane

The first method involves the numerical solving by
successive Iterations of the differential equation of
heat conduction in a conformai transformed plane
[4]. It relies on three main assumptions :

o hyp .1 : the ground surface is isothermal
(Kenelly hypothesis).

o hyp.2 : the surface of the studied cable is
isothermal, that amounts to suppose its thermal
conductivity is Infinite. A self resistance
between the cable and the ground surface can
be defined from hypothesis 1 and 2.

o hyp .3 : when the installation inciudes several
loaded cables, a partial thermal field is
calculated for each cable, by supposing that it is
the only heat source, ail other cables being
replaced by solI. Then the partial fields are
added and the temperature rise on each cable
can be estimated (restricted application of the
principle of superposition).

Each cable is in turn the reference cable, considered
as a line source of depth y,. The centre of the other
cables and the location of the boundaries between
regions of different thermal resistivity (backfill and
superficial layer) are mapped in the transformed
plane by the function :

w = et>(z) = In[ Z+ j1Y11] (1)
Z - llYll

The conformai transformation simplifies a problem in
the original plane (z plane) with Infinite dimensions,
to a rectangle of finite dimensions (w plane) where
the upper boundary represents the ground surface
and the lower boundary characterises the cable
surface. The differential equation of heat conduction
is invariant under such a transform. The
temperatures at corresponding locations in the z
plane and the w plane are the same when the
boundary conditions are the same. In the
transformed plane, the isotherms become straight
Iines parallel to the line representing the ground
surface, and the flux lines are represented by a
second set of parallel Iines perpendicular to the
isotherms.

An analogous resistance network covering the
rectangular area of the transformed plane is then
developed, where nodal points are Iinked by a grid of
discrete elements characterising areas of different
thermal resistivities. From an initial linearly spaced
distribution of temperatures between the soil and
cable surfaces, it is possible to evaluate the
temperatures of the mapped nodes with a standard
method of numerical analysis or a recurrence
equation, allowing an Iterative solution.

The distribution of nodal temperatures yields the
value of the quantity of heat flowing per time unit
from the reference cable to the ground surface.
Using in turn each cable as the reference one, the
methods determines the complete matrix which
elements are the self thermal resistance of the l"
cable in the system, or the mutual thermal resistance
between cable i and cable k, playing the same rote
as the external thermal resistance T, given in tEC
Publication [2].

6. The Neher-McGrath method

The conventional formutae recommended by IEC
Publication 60287 [2] to calculate external thermal
resistances T, is only applicable with the assumption



of a single value of thermal resistivity throughoutthe
ground (homogeneous soil). The Neher-McGrath
method has been integrated in the international
standard to consider ducts embedded in concrete.
This approach may obviously be extended to any
envelope such a backfill : a correction is added to
account for the difference in the thermal resistivities
of the envelope and the native soil.

The method is based on Iwo assurnptions, added to
hyp.1 to 3 in the previous section:

• hyp.4 : the rectangular backfill is replaced by a
circular backfill with the same capacity of heat
dissipation.

• hyp.5 : the surface of the equivalent circular
backfill is isothermal. In the transformed plane.
the boundary of the backfill is a straight
horizontalline.

7. The EI·Kady & Horroeks method

The previous method substitutes the original
rectangular backfill for a circular shape (equ.3). This
approximation is only valid for ratios of y/x less
than 3. EI-Kady and Horrocks [6] proposed a table of
extended values of the geometric factor Gb to
overcome this restriction. from calcutations with a
finite-element technique. as a function of backfill
depth/height (Le/Hb) and heighVwidth (HoIWb) ratios.

With regard to the Neher-McGrath approach, hyp.5
of an isothermal backfili/soii interface is still
assurned, but equations 2 to 5 become obsolete and
Gb is given by a table.

8. The «eorrected backf ill depth» method

(9)

(14)

flg.2 : Equivalent circular backfllls
(original and corrected depths)

Despite of this refinement to the Neher-McGrath
approach, the previous method [6] still assumes that
the backfill surface is isothermal. But cables are
usually laid in the lower part of the backflll, and the
heating of the backfill is higher at the bollom than at
the top. So we have adopted a new approach which
does not formulate the restrictive hyp.5.

Let us consider a single cable in a uniform soil, at a
depth L, assumed as an equivalent heat line source
of co-ordinate y,. The set of isothermal lines are
eccentric cirdes of radius r :

~L' - r' ~ y, (12)

Especially for the isothermal cable surface :

y, = Je-~ (13)

The depth value of the centre of the equivalent
circular backfill Lb is deduced from its radius rb
(equ.3).

We have chosen a corrected depth Lb' 50 that the
heights of backfill material above and below the
cable system follow the same ratio as the actual
rectangular backfill (h;/h, =h" /h , ) :

. [LG- L 1]L =y -v r ----
• 1 • H 2b

(10)

(11)

." P. ( .,, )
T, = T,o-+corr T, = T, . + T"

P.
The second formulation separates clearly the terms
relative to the backfill T' b. and the surrounding soil
T" . where :

The equivalent expression is convenient to evaluate
Ihe temperature on the backfill boundary (supposed
sotherrnal according to hyp.5). of particular interest
10 fix a critical temperature when drying-out of the
soil occurs.

The equivalent radius of the isothermal circle
depends on the rectangular backfill sides :

x = min(H•.W. ) and y = max(H. ,W. ) (2)

r. = exp[~; ( :- ; } n(1<:J + ln( ;)] (3)

With : u; = La (4)
r.

the geometric factor G. introduced in [6] is :

G. =ln(U. +~U: -1) (5)

For centre cable of the reference example (if cables
have approximately equallosses) :

2L
u =- (7)

o.

T~~ = ; ; [In( u + ~u' - 1) + In( 1+ (~n] (B)

The correction is added algebraically to T' ''. the
extemal resistance of the cable or duet :

corr(T,-' )= !'!..-(P. - P.P. (6)
2"



If the n cables of the system have approximately
equal losses, the overall effective thermal resistance
can be calculated for the cable of interest i :

According to hyp .6, isothermal lines may be
considered as straight horizontallines :

R. = _1_ f pdu (24)

2" '

R" = _1_[Pbln d;, - (P. - p,Xm, + ab cos v,l] (25)
2" d.

Now the new equivalent backfill is established, let us
calculate the conformai transform of its boundary :

w = U+ jv = <1>(- jLb- jrbcos a + rbsina ) (15)

where : a E [0,2" J,

According to equ. 1, developing the exponential
terms of equ.15, and identifying real and imaginary
parts : (16)

[

eucos vr; sin a +eUSin V!Lb+rbcos a +IY,I!=rbsin a
eUsin v.rbsina - eUcos v L" + rbcos a +ly,l

= - LbH b cos a - ly,1
hn

RI = T. (i) '" IR.
h '

(26)

The value of an elementary vertical resistance is :

f pdu = - PbU. + (Pb- p. Xmb+ abCOSV ) (20)
o

• hyp.6 : heat flow in the transformed plane is in
paths parallel to the u axis (straig ht vertica l
lines) .
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9. A comparison of the different methods
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The direct method we have developed (with a non
isothermal backfi ll) follows the variations of the
reference method of conformai transform with a goOO
accuracy, but needs to be rectified by a correcting
factor (kb =1,017).

The iterative soluti on with conformai transfo rm of [4]
is reliable with a good accuracy. Compl ex designs
with several circuits and different values of thermal
resistivity can be computed . However the calculation
time may be in a matter of minutes, and the rnethod
is not suitable in a design aid softwa re based on
analy1ical formulae (IEC 60287 or Neher-McGrath) .
Finite-difference or finite-element method tools may
be more appropriate.

fig.3 : Variation of the cable laylog depth

From the reference example without superficial layer,
computations of the ex1ernal thermal resistance have
been performed for the different methods. Only one
parameter is chang ed for a range of values, ail othe,
things being equal. For the hottest cable, the relative
error (%) aga inst the conformai transform result ls
then plotted on the follow ing diagrams :

The straightforward Neher-McGrath method gives
Immediate results but the approxima tion of a
rectangular backfill by an isothermal circle is only
valid for a limited range of height/width ratios. The
extended values of geometric factor of i6] are
available in a table and overcome this restrict ion.

(22)( Pbl{ U + ~U2 - 1)- (Po - P' fnb)'

- (Po- Pb f a~

1
R· = ­

' 2rr

The explicit value of v in terms of u is not immediate,
it is preferable to represent the backfill boundary by
an approximate function :

u = m, + abCOS V (17)

The equations system is not Iinear as a function of a,
but is solved from special points for which the exact
value is known (v=O and v=-,,) :

mb=~ln[ (Lb. +rb- ly,IX- ~~ +rb+ly,I)] (18)

2 -(Lb- r, +ly,IXLb - rb+IY,lf
1 [ (L, H b - ly,IXLb - r, +ly,l)]

ab="2 ln (L~ H , +ly,IX-LbH b +ly,D (19)

For standard cables configurations , the error on u
due to the approximation is in the order of 5%.

The self thermal resistance R, of the cable i is given
by equ.7 and 21 :

1 _ f 1 dv (21)
R, - 2, f pdu

o

Boundaries are not straight horizontal lines in the
transformed plane, and heat fluxes are not straight
up. But we do a new assumption to evaluate the
thermal resistances, as suggested in the solution by
manual method of [4].

The mutual thermal resistance R,. between cable i
and cab le k is the resistance between the isothermal
line issued from the centre of the cable k (co­
ordinates z.), and the ground surface.

v, = 3(<I>(z,ll =arg[Z, + j!y,l] (23)
z, - l!y,!



(31)

(32)

(33)

Hslv1 error (%L_
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The explicit value of v in terms of u is not immediate,
it is preferable to represent the superficial layer
boundary by an approximate function :

u = msl + aslcos v (30)

Substituting this expression in equ.28, using limiting
forms, and assuming Hsi much less than Y1 :

(easl r: ~ 1+ IY11- Hsi (eas, -1)COSV
IY11+ Hsl

(e-aslrsv ~ 1~ IY11+ Hsl (e-as' -1)COSV
IY11- Hsl

Equ.29 becomes:
~Y1 + HS/lXemsl - e-as'cosv)
-~Y1-Hs/IXe-ms, _eas' COsv)=o

ln any case, the superficial layer should not extend
to the cablesor the backfill, otherwise complex
geometrical figures would be obtained in the
transformed plane.

Since Hsi « Y1, then asl « 1, and the assumption
relative to limiting forms (equ.31 & 32) is checked.
The error on the boundary of the superficial layer in
the transformed plane has been numerically
estimated for a ratio Hs!Y1:
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10. A simple method for a superficiallayer
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(35)

The self and mutual thermal resistancesare given by
similar expressions to equ.20, 21, 23 & 24 :

R
ii

=_1 (Pe ln(U+.Ju2-1)-(Psl-Pe)ms/J

21r _ (Pe - PS/)2 a;1

n; = _1_[Pe ln d;k -(PSi - Pet~sl +aslCOSVk)l (36)
21r dik

From the reference example without backfill,
computations of the externalthermal resistance have
been performed for this simple method, changing the
height of the superficial layer. For the hottes! cable,
the relative error (%) againstthe conformai transform
result is then plotted on fig.? :

(27)

ln the previous sections, the backfill of fig.1 is the
only medium of different thermal resistivity
considered. Cables are now assumed to be directly
buried in the soil, with a superficial layer of height Hsi
and thermal resistivity Psi.

Let us calculate the conformai transform of the layer
boundary :

w =u + jv =<I>(x - jHs/ )

where : x E }- oo,+oo[ ,

Eliminating x, the function between u and v is :

~Y1 + Hs/l~u - ~Y1 - Hs/l~-u = 2Hsicos v (29)
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11. List of symbols

De = external diameter of cable (mm).
S = axial separation of conductors (mm).
L = depth of laying, to cable axis or centre of

trefoil (mm).
LG = distance from the soil surface to the centre of

the backfil1(mm).
Wb = width of the backfill (mm).
Hb = height of the backfill (mm).
Hs/ = height of the superficiallayer (mm).
Pe = thermal resistivity of earth surroundinq the

backfill (K.m/W).
Pb = thermal resistivity of material used for the

backfill (K.m/W).
Pst = thermal resistivity of the superficial layer

(K.m/W).

Y1 = co-ordinate of line source of heat which
corresponds to an isotherm at the surface of
the reference cable (mm).

Ue = position of surface of reference cable in the
transformed plane.

u,v = co-ordinatesin the transformed plane.
RH = self thermal resistance of cable i (K.m/W).
Rik = mutual thermal resistance between cable

and cable k (K.m/W).
Ri = sum of weighted thermal resistance of cable i

(equivalent to T4 in IEC Publication) (K.m/W).
z, = complex co-ordinates of the centre of cable k

in the original plane (mm).
Vk = co-ordinate on the horizontal axis of the

centre of cable k in the transformed plane.

x.y = sides of backfills (x<y) (mm).
fb = radius of the equivalent circular backfill (mm).
U,Ub = intermediate variables used in the calculation

of the thermal resistance of surrounding
medium of a cable, or in the calculation of the
geometric factor of a rectangular backfill.

Gb = geometric factor of the backfill.
T4 = thermal resistance of surrounding medium

(K.m/W). .
T/ = thermal resistance of the air space between

the cable surface and duct internai surface
(K.m/W).

T4" = thermal resistance of the duct (K.m/W).

T/" = external thermal resistance of the duct
(K.m/W).

T40'" = original thermal resistance of surrounding
medium before correction taking into account
the backfill (K.m/W).

T4b = thermal resistance between the cable surface
or external surface of duct and the backfill
boundary (K.m/W).

T4s = thermal resistance between the backfill
boundary and ground surface (K.m/W).

dik = distance from centre of reference cable i to
an adjacent cable k (mm).

d'ik = distance from centre of reference cable i to
the image of an adjacent cable k (mm).

Lb = depth of the equivalent circular backfill (mm).
Lb' = corrected depth of the equivalent circular

backfill (mm).
mb,ab= mean and amplitude values of the

approximate function to represent the circular
backfill boundary in the conformai
transformed plane.

ms/,as/= mean and amplitude values of the
approximate function to represent the
superficial layer boundary in the conformai
transformed plane.

kb = factor to rectify the global thermal resistance
for the corrected backfill depth method.
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