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Résumé

La capacité de transport des cables de puissance
dépend fortement du milieu environnant. Les
caractéristiques thermiques du sol sont un
parametre critique qui conditionne le risque de
migration d’humidité et d'emballement thermique.
Des remblais spéciaux peuvent remplacer
avantageusement le sol qui a été creuseé.

Le texte ci-aprés présente des résultats comparatifs
a partir de quelques méthodes permettant de
calculer la résistance thermique externe T, lorsque
le sol n'est pas homogéne.

Des données économiques peuvent dés lors étre
utilisées pour un dimensionnement optimisé des
remblais, selon le critére du ratio entre puissance
transitée et colt global de la tranchée.

Abstract

Ampacity of power cables is significantly dependent
on the surrounding medium. The thermal
characteristics of the soil is a critical parameter
increasing the risk of moisture migration and thermal
instability. Special backfills may be used to replace
advantageously the local excavated soil.

The following paper presents some comparative
results from a few methods to calculate external
thermal resistances T; when the soil is not
homogeneous.

Economical data may be introduced to lead to an
optimum design of backfills, according to a criterion
of ratio between cable ampacity and global cost of a
trench.

1. Heat transfer for buried cable systems

Total losses generated in buried power cables flow
through the soil to the ground surface and are
dissipated into the atmosphere. The conductor
temperature rise of these cables is due for its major
part to the soil, and analysis to one factor sensitivity
studies show that the depth of laying and thermal
characteristics of the soil are critical parameters.

Granular particles greatly affect the thermal
behaviour of the soil according to their constituents,
size distribution, density and moisture content.
Cavities between the more or less compacted
particles are filled with water or air. If the moisture
migrates from the soil, the thermal resistivity rises,
increasing the'cable temperature and intensifying the
losses. It contributes to speed up moisture migration
and a thermal instability arises.

Because thermal resistivities of mineral constituents
and water are out of proportion with the one of air, it
is essential to maximise the amount of solid and
water. A high density due to compaction improves
the series of parallel paths in the global structure.
Therefore special backfills (selected sands,
stabilised or fluidised backfills) may be used to
replace the local excavated soil.

2. Cable systems in backfills

The computation of ampacities of cables systems in
backfills is a current practice. It applies to cables laid
in a well-conducting material to improve heat
dissipation and to ducts installed in layers of
concrete. In both configurations, the surroundings
are a material which has a different thermal
resistivity from that of the native soil.

We will consider the installation of three cables in flat
formation described in Electra #98 [4].

fig.1 : Three cables in a backfill, flat formation
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A list of symbols is given at the end of the document.

3. Superficial layer

CIGRE WG02 of SC21 recommends in [4] a method
to calculate the effective external thermal resistance
of cables laid in a backfill. The heat path between
cable and soil surface contains regions having
different values of thermal resistivity, when the
conventional formulae given in IEC Publication
60287 [2] are based on the assumption of a single
value of thermal resistivity throughout the ground. In
the present paper, we added the feasibility of taking
into account an additional discontinuity of thermal
resistivity : a superficial layer of height Hg is
considered. It may represent the upper layer of the
soil exposed to solar radiation, of higher thermal
resistivity in summer when drying out of the soil
occurs.

4. Reference example

The well-known example of [4], illustrated by
figure 1, is also used for our calculations :

D.=100 mm, S =120 mm,
L =1450 mm, Lg = 1350 mm,
W, =400 mm, H, = 500 mm.

Original values of thermal resistivity of soil and
backfill (respectively 3,0 and 1,0 K.m/W) were
judged a little high. We adopted values in common
use in France, in accordance with operating
conditions of [3] :

pe = 0,85 K.m/W, p, = 0,7 K.m/W.

We introduced a superficial layer of higher thermal
resistivity :

Hg =500 mm, pg = 1,2 K.m/W.

This basic configuration is applied to compare
different methods of calculation, dealing with steady-
state thermal conditions. The singularity of discrete
changes of thermal resistivity is treated as a two
dimensional problem in a plane perpendicular to the
cable axis.

5. An iterative solution in a transformed plane

The first method involves the numerical solving by
successive iterations of the differential equation of
heat conduction in a conformal transformed plane
[4]. It relies on three main assumptions :

e hyp.1 : the ground surface is isothermal
(Kenelly hypothesis).

e hyp.2 : the surface of the studied cable is
isothermal, that amounts to suppose its thermal
conductivity is infinite. A self resistance
between the cable and the ground surface can
be defined from hypothesis 1 and 2.

e hyp.3 : when the installation includes several
loaded cables, a partial thermal field is
calculated for each cable, by supposing that it is
the only heat source, all other cables being
replaced by soil. Then the partial fields are
added and the temperature rise on each cable
can be estimated (restricted application of the
principle of superposition).

Each cable is in turn the reference cable, considered
as a line source of depth y;. The centre of the other
cables and the location of the boundaries between
regions of different thermal resistivity (backfill and
superficial layer) are mapped in the transformed
plane by the function :

(1)

w=®(z)= In{z+j|%q

Z—f|Y1|

The conformal transformation simplifies a problem in
the original plane (z plane) with infinite dimensions,
to a rectangle of finite dimensions (w plane) where
the upper boundary represents the ground surface
and the lower boundary characterises the cable
surface. The differential equation of heat conduction
is invariant under such a transform. The
temperatures at corresponding locations in the z
plane and the w plane are the same when the
boundary conditions are the same. In the
transformed plane, the isotherms become straight
lines parallel to the line representing the ground
surface, and the flux lines are represented by a
second set of parallel lines perpendicular to the
isotherms.

An analogous resistance network covering the
rectangular area of the transformed plane is then
developed, where nodal points are linked by a grid of
discrete elements characterising areas of different
thermal resistivities. From an initial linearly spaced
distribution of temperatures between the soil and
cable surfaces, it is possible to evaluate the
temperatures of the mapped nodes with a standard
method of numerical analysis or a recurrence
equation, allowing an iterative solution.

The distribution of nodal temperatures yields the
value of the quantity of heat flowing per time unit
from the reference cable to the ground surface.
Using in turn each cable as the reference one, the
methods determines the complete matrix which
elements are the self thermal resistance of the
cable in the system, or the mutual thermal resistance
between cable / and cable k, playing the same role
as the external thermal resistance T, given in IEC
Publication [2].

6. The Neher-McGrath method

The conventional formulae recommended by IEC
Publication 60287 [2] to calculate external thermal
resistances T, is only applicable with the assumption




of a single value of thermal resistivity throughout the
ground (homogeneous soil). The Neher-McGrath
method has been integrated in the international
standard to consider ducts embedded in concrete.
This approach may obviously be extended to any
envelope such a backfill : a correction is added to
account for the difference in the thermal resistivities
of the envelope and the native soil.

The method is based on two assumptions, added to
hyp.1 to 3 in the previous section :

* hyp.4 : the rectangular backfill is replaced by a
circular backfill with the same capacity of heat
dissipation.

o hyp.5 : the surface of the equivalent circular
backfill is isothermal. In the transformed plane,
the boundary of the backfill is a straight
horizontal line.

The equivalent radius of the isothermal circle
depends on the rectangular backfill sides :

x=min(H,,W,) and y=max(H,W,) (@

2
F; =€xp L A In 1+y— +In[xj (3)
2ylm y = 2
With : ub=5 )

the geometric factor G, introduced in [6] is :

G, = In(u,, Faftha— 1) (5)

"

The correction is added algebraically to T,", the
external resistance of the cable or duct :

corr{Ty)= 2 (0. - P )Gy ®

For centre cable of the reference example (if cables
have approximately equal losses) :
2L

u_ @)

2L
—1)+In1+| = 8
[ +n[+[s]ﬂ .
=T +corr( =T + T, (©)

The second formulat:on separates clearly the terms
elative to the backfill Ty, and the surrounding soil

T4s, Where :
T N
Ve _—.[ ;: —EG"J% (10)
N
T4s :EpaGb (11)

The equivalent expression is convenient to evaluate
he temperature on the backfill boundary (supposed
sothermal according to hyp.5), of particular interest
o fix a critical temperature when drying-out of the
s0il oceurs.

7. The El-Kady & Horrocks method

The previous method substitutes the original
rectangular backfill for a circular shape (equ.3). This
approximation is only valid for ratios of y/x less
than 3. El-Kady and Horrocks [6] proposed a table of
extended values of the geometric factor G, to
overcome this restriction, from calculations with a
finite-element technique, as a function of backfill
depth/height (Ls/H,) and height/width (H,/W,) ratios.

With regard to the Neher-McGrath approach, hyp.5
of an isothermal backfill/soil interface is still
assumed, but equations 2 to 5 become obsolete and
Gy is given by a table.

8. The «corrected backfill depth» method

Despite of this refinement to the Neher-McGrath
approach, the previous method [6] still assumes that
the backfill surface is isothermal. But cables are
usually laid in the lower part of the backfill, and the
heating of the backfill is higher at the bottom than at
the top. So we have adopted a new approach which
does not formulate the restrictive hyp.5.

Let us consider a single cable in a uniform soil, at a
depth L, assumed as an equivalent heat line source
of co-ordinate y;. The set of isothermal lines are
eccentric circles of radius r:

VL -r® =y, (12)

Especially for the isothermal cable surface :
DZ
= T

The depth value of the centre of the equivalent
circular backfill L, is deduced from its radius r
(equ.3).

vy =41 (13)

fig.2 : Equivalent circular backfills
(original and corrected depths)

We have chosen a corrected depth Ly’ so that the
heights of backfil material above and below the
cable system follow the same ratio as the actual
rectangular backfill (hoths = ho/hy’) :

. L 4
Lb=ya+f{LG ——} (14)

H, 2
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Now the new equivalent backfill is established, let us
calculate the conformal transform of its boundary :

W=Uu+jv= d)(— JL, — jryCOS@ +1;, sina) (15)
where: a e [0,21:].

According to equ.1, developing the exponential

terms of equ.15, and identifying real and imaginary

parts : (16)

" cosv.r, sina +e“ sinv|L, +r, cosa +|y,|)=r, sina
" sinv.r, sina —e* cosv(L, +r, cosa +|y,|
=L, +r, cosa - |y,|

The explicit value of v in terms of v is not immediate,
it is preferable to represent the backfill boundary by
an approximate function :

u=m,+a,Cosv (17)

The equations system is not linear as a function of «,
but is solved from special points for which the exact
value is known (v=0 and v=-x) :

1 l:(’-.o +5 '!y1IX_ L.b +p +|y")} (18)

m, =—In| = ;
A (Lb +r +|y,|XL,, -, +|y,|)

2

1|n|:((l'.b+rb_|y1|IL.b—rb+|Y1|):| (19)

a,=—

2

L, +r, +|y,|I— L, +r, +|y1|)
For standard cables configurations, the error on u
due to the approximation is in the order of 5%.

Boundaries are not straight horizontal lines in the
transformed plane, and heat fluxes are not straight
up. But we do a new assumption to evaluate the
thermal resistances, as suggested in the solution by
manual method of [4].

e hyp.6 : heat flow in the transformed plane is in
paths parallel to the u axis (straight vertical
lines).

The value of an elementary vertical resistance is :
f_ pdu=-p,u, +(p, — p, km, +a,cosv) (20)

The self thermal resistance R; of the cable i is given
by equ.7 and 21 :

1 1
—=| —av (21)
R, fzs f'pdu
2
Ri :l (pblr{u+ 'uz _1)_(p8 - pb)”b) (22)
= —\Pe pb)za:

The mutual thermal resistance R between cable i
and cable k is the resistance between the isothermal
line issued from the centre of the cable k (co-
ordinates z,), and the ground surface.

v, = 3(@(z,))= a@[w} (23)

Z - jLV1|

According to hyp.6, isothermal lines may be
considered as straight horizontal lines :

1
Ry = = E pdu (24)

1 d,
Ri ==—| p» In=%~(p, - p, \m, +a, cosv,) (29)
2n d

If the n cables of the system have approximately
equal losses, the overall effective thermal resistance
can be calculated for the cable of interest j :

k=n
R, =T(i)= Y R, (26)

k=1

9. A comparison of the different methods

The iterative solution with conformal transform of [4]
is reliable with a good accuracy. Complex designs
with several circuits and different values of thermal
resistivity can be computed. However the calculation
time may be in a matter of minutes, and the method
is not suitable in a design aid software based on
analytical formulae (IEC 60287 or Neher-McGrath).
Finite-difference or finite-element method tools may
be more appropriate.

The straightforward Neher-McGrath method gives
immediate results but the approximation of a
rectangular backfill by an isothermal circle is only
valid for a limited range of height/width ratios. The
extended values of geometfric factor of [6] are
available in a table and overcome this restriction.

The direct method we have developed (with a non
isothermal backfill) follows the variations of the
reference method of conformal transform with a good
accuracy, but needs to be rectified by a correcting
factor (k, = 1,017).

From the reference example without superficial layer,
computations of the external thermal resistance have
been performed for the different methods. Only one
parameter is changed for a range of values, all other
things being equal. For the hottest cable, the relative
error (%) against the conformal transform result is
then plotted on the following diagrams :
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fig.3 : Variation of the cable laying depth
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fig.4 : Variation of the depth of laying to centre of the backfill
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fig.5 : Variation of the width of the backfill
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fig.6 : Variation of the height of the backfill

10. A simple method for a superficial layer

In the previous sections, the backfill of fig.1 is the
only medium of different thermal resistivity
considered. Cables are now assumed to be directly
buried in the soil, with a superficial layer of height Hy
and thermal resistivity pg.

Let us calculate the conformal transform of the layer
boundary :
w=u+jv=a(x-jH,) @7)

where : x e |- oo+00[ ,

According to equ.1, developing the exponential
terms of equ.27, and identifying real and imaginary
parts :

€“x.cosv + e"ﬂy1| +H,, )sinv = x
. (28)
e“x.sinv —e”ﬂy1| +H, )cosv = |v+| - Hg
Eliminating x, the function between vand vis:
(v, +Hylle* (v, - Hap™ =2H, cosv  (29)

The explicit value of v in terms of v is not immediate,
it is preferable to represent the superficial layer
boundary by an approximate function :

u=mg +a, cosv (30)

Substituting this expression in equ.28, using limiting
forms, and assuming Hg much less than y; :

(6% " =1+ j:: ;ZZ (% -1)oosv (1)
[ P =1+ ;/1 +ZS’ (e —t)cosv (@)
117 st

Equ.29 becomes :
q y, +H, |Xe’"5’ —e™ cos.v)
—ys —Hy[fe™™ —e™ cosv)=0

s/

(33)

This equation must be checked for any value of v :

m. = —lln{ly1| + Hslj

sl
2 I,V1|_Hs/ (34)
_ 1 [|y1|+HsIJ
ay =—Inj ———
2 |Y1l_Hs/

Since Hy << y4, then ay << 17, and the assumption
relative to limiting forms (equ.31 & 32) is checked.
The error on the boundary of the superficial layer in
the transformed plane has been numerically
estimated for a ratio Hy/y, :

Hsiys error (%)
0,25 0,2
0,5 1
0,75 10

In any case, the superficial layer should not extend
to the cables or the backfill, otherwise complex
geometrical figures would be obtained in the
transformed plane. :

The self and mutual thermal resistances are given by
similar expressions to equ.20, 21,23 & 24 :

2
R. =.._1.__ (pe In(u+ Vuz —1)_(psl - pe)my) (35)

i 2
d ~(p, - py Va3

Ry = i Pe |n% - (psl ~ Pe X';ﬁ's/ +da, Cos Vk) (36)
2r d,

From the reference example without backfill,
computations of the external thermal resistance have
been performed for this simple method, changing the
height of the superficial layer. For the hottest cable,
the relative error (%) against the conformal transform
result is then plotted on fig.7 :
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fig.7 : Variation of the height of the superficial layer
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11. List of symbols

external diameter of cable (mm). -

axial separation of conductors (mm).

depth of laying, to cable axis or centre of

trefoil (mm).

distance from the soil surface to the centre of

the backfill (mm).

width of the backfill (mm).

height of the backfill (mm).

height of the superficial layer (mm).

thermal resistivity of earth surrounding the

backfill (K.m/W).

thermal resistivity of material used for the

backfill (K.m/W).

= thermal resistivity of the superficial layer
" (K.m/W). ‘

= co-ordinate of line source of heat which
corresponds to an isotherm at the surface of
the reference cable (mm).

position of surface of reference cable in the
transformed plane.

co-ordinates.in the transformed plane.

self thermal resistance of cable i (K.m/W).
mutual thermal resistance between cable i
and cable k (K.m/W).

sum of weighted thermal resistance of cable i

(equivalent to T, in IEC Publication) (K.m/W).

= complex co-ordinates of the centre of cable k
in the original plane (mm).

co-ordinate on the horizontal axis of the
centre of cable k in the transformed plane.

sides of backfills (x<y) (mm).

radius of the equivalent circular backfill (mm).
intermediate variables used in the calculation
of the thermal resistance of surrounding
medium of a cable, or in the calculation of the
geometric factor of a rectangular backfill.
geometric factor of the backfill.

thermal resistance of surrounding medium
(K.m/W). :

thermal resistance of the air space between
the cable surface and duct internal surface
(K.m/W).

= thermal resistance of the duct (K.m/W).

T4 = external

thermal resistance  of the duct

(K.m/W).

T4 = original thermal resistance of surrounding

Taw

mya,= mean and

mgag= mean = and

ko

gy

(2]

3]

[4]

(5]

[6]

(71

medium before correction taking into account
the backfill (K.m/W).

= thermal resistance between the cable surface
or external surface of duct and the backfill
boundary (K.m/W).

= thermal resistance between the backfill
boundary and ground surface (K.m/W).

= distance from centre of reference cable i to
an adjacent cable k (mm).

= distance from centre of reference cable i to
the image of an adjacent cable k (mm).

= depth of the equivalent circular backfill (mm).

= corrected depth of the  equivalent circular

" backfill (mm).

amplitude values of the

approximate function to represent the circular

backfil boundary in - the  conformal

transformed plane. -

amplitude values of the
approximate function to represent the
superficial layer boundary in the conformal
transformed plane.

= factor to rectify the global thermal resistance
for the corrected backfill depth method.
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