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ABSTRACT 
Cable impedance and admittance formulas are essential 
to study steady-state and transient phenomena on a 
cable. Pollaczek derived the earth-return impedance of an 
underground cable in 1928. Wedepohl and Wilcox derived 
the cable internal impedance and admittance in 1973. 
Then, the formulation of the cable impedance and 
admittance matrices was generalized and implemented 
into well-known EMTP as a subroutine "Cable Constants" 
in 1976 by Ametani. Since then a number of transient 
simulations on cable systems have been carried out using 
the EMTP, and there are many papers discussing the 
above mentioned work and deriving new formulas, either 
accurate or approximate. This paper has reviewed and 
summarized the previous publications to give an idea of 
what are the cable impedance, admittance, and the EMTP 
simulations of the cable transients.  
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I. INTRODUCTION 

A number of underground cable transmission systems are 
under construction and/or are planned in many countries 
[1-3]. For the insulation design and coordination of an 
underground cable, it is essential to predict and 
investigate possible over-voltages. Cable impedance and 
admittance formulas are necessary to study transient and 
steady-state phenomena on the cable.  
The impedance and admittance formulation of a cable is 
far more complicated than that of an overhead line, 
because even a single-phase cable consists of two 
conductors at least, i.e. a core conductor and a metallic 
sheath (shield) in the case of a single-core coaxial cable 
(SC cable) [4, 5]. Also a long high-voltage SC cable is 
quite often cross-bonded, similar to overhead line 
transposition. Furthermore, a so-called pipe-type cable 
(PT cable), such as a POF cable, is composed of three-
phase cables installed within a conducting pipe. Then the 
PT cable becomes a seven-conductor system.  
An impedance formula of a cylindrical conductor was 
derived by Schelkunoff in 1932 [6]. The impedance and 
admittance formulas of an SC cable were developed by 
Wedepohl and Wilcox [4]. The impedance and admittance 
formulas of a PT cable, where an inner conductor is 
eccentric to the pipe centre, were developed by Brown 
and Rocamora [7]. The earth-return impedance of an 
underground cable was derived by Pollaczek in 1926[8]. 
The formulas have been generalized and implemented 
into well-known EMTP (Electro-Magnetic Transients 
Program) as a subroutine “Cable Constants” in 1976 by 
Ametani in the Bonneville Power Administration, US 
Department of Energy [5, 9]. 
This paper summarizes and reviews the impedance and 

admittance formulation of three-phase SC and PT cables. 
Also, problems of the formulas and their applications are 
reviewed, and a recent trend of the cable impedance and 
admittance calculations is explained. 

II. IMPEDANCE AND ADMITTANCE 
FORMULATION 

A.Formulation of impedance and admittance 
The Impedance and admittance of a cable system are 
defined in the two matrix equations [5]. 
              d dx d dx= − ⋅ = − ⋅V Z I I Y V  (1) 
where ,V I : voltage and current vectors at  distance x,  

,Z Y : square matrices of impedance and admittance. 

In general, the impedance and admittance matrices of a 
cable can be expressed in the following forms [5]. 
              0i p c= + + +Z Z Z Z Z   (2) 

       1
0, i p cs −⋅ + + +Y = P P = P P P P  (3) 

where P  is a potential coefficient matrix and s jω= .  

In the above equations, the matrices with subscripts “i” 
concern an SC cable and the matrices with subscript “p” 
and “c” are related to a pipe enclosure. The matrices with 
subscript “o” concern cable outer media, i.e. air space and 
earth. When a cable has no pipe enclosure, there exists 
no matrix with subscripts “p” and “c”. 
In the above formulation implemented in the EMTP, the 
following assumptions are made [5]. 

• The displacement currents and dielectric losses are 
negligible. 

• Each conducting medium of a cable has constant 
permeability. 

• The pipe thickness is greater than the penetration 
depth of the pipe wall for the PT cable case. 

The details will be explained in the following sections. 

B. Impedance matrix 
B1. Internal impedance of a single-core coaxial 
cable (SC cable) 
Assume that an SC cable consists of a core, sheath and 
armor as shown in Fig. 1(a). The impedance matrix is 
given in the following form.  

                          
1 ...

= ... ... ...

...

i

in

 
 
 
  

i

Z 0

Z

0 Z

 (4)  

All the off-diagonal sub-matrices of iZ  are zero.  

A diagonal sub-matrix ijZ  ( 1,...,j n=  for an n-phase SC 

cable) expresses the self-impedance matrix of one phase 
SC cable, which is given by: 
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ccj csj caj

ij csj ssj saj

caj saj aaj

Z Z Z

Z Z Z

Z Z Z

 
 

=  
 
  

Z  (5) 

4 2 3core self-impedance 2 2ccj cs sa a m mZ z z z z z= = + + − −  (6) 

4 3sheath self-impedance 2ssj sa a mZ z z z= = + −  (7) 

4armour self-impedanceaaj aZ z= =  (8) 

4 2 3core to sheath mutual impedance 2csj sa a m mZ z z z z= = + − −  (9) 

4 3core to armour mutual impedancecaj a mZ z z= = −  (10) 

sheath to armour mutual impedancesaj cajZ Z= =  (11) 

10 1 2 20 2 3 4 30 3, ,cs in i sa in i a inz z z z z z z z z z z= + + = + + = +     (12)

0where : outer surface impedance of conductor kkz  

 : inner to outer surface impedance of conductor kkmz  

 : inner surface impedance of conductor kkiz  

 : outer insulator impedance of conductor kkinz  

and k=1 for core, k=2 for sheath, k=3 for armor. 
 
When the SC cable consists of a core and sheath, the 
matrix of (5) is reduced to a 2X2 matrix.  

                         
ccj csj

ij
csj ssj

Z Z

Z Z

 
=  
  

Z  (13) 

                 
3 2 3

3 2 3 20 23

2 ,

,

ccj cs s m ssj s

csj s m s

Z z z z Z z

Z z z z z z

= + − =

= − = +
 (14) 

If an SC cable consists only of a core, the sub-matrix is 
reduced to one element, i.e. 
                         11 12ij ccjZ z z= = +Z  (15) 

The component impedances per unit length in the above 
equations are given in Appendix A. 

 
(a) SC cable cross-section. 

 
(b) System configuration. 

Fig. 1  Single-core coaxial (SC) cable. 

B2. Impedance matrices pZ  and cZ  of a pipe-

type cable (PT cable) 
The impedance matrix of a PT cable shown in Fig. 2, 
where an inner conductor is an SC cable, is given by: 
(a) Pipe thickness assumed to be infinite 
                             i p+Z = Z Z   (16) 

(b) Pipe thickness being finite 
                     0i p c+ + +Z = Z Z Z Z  (17) 

  2

2 3

, , =
00

tc cp t i t
p c i

c cZ

    
= =     

      

Z ZZ 0 Z 0
Z Z Z

00 Z
 (18) 

where pZ : pipe internal impedance, cZ : inner to outer 

surface impedance, iZ : SC cable impedance in a pipe. 

 
Fig. 2 A PT cable. 
 
In (18), the last columns and rows correspond to the pipe 
conductor. Thus, these should be omitted when the pipe 
thickness is assumed as infinite. A diagonal sub-matrix of 

iZ , in (16) or (17), is given in (5). A sub-matrix of pZ , 

(18), is given in the following form.    
          , where : 3 3 matrix of 1'spjk pjkZ= ⋅ ×Z U U  (19) 

When an inner conductor consists of a core and a sheath, 
(19) is reduced to a 2X2 matrix. When the inner conductor 
consists only of a core, (19) is further reduced to a column 
matrix in the same manner as explained in the case of iZ  

in Section B1. This is the same for all the other 
impedance and admittance matrices explained in this 
section. The formula of pjkZ  is given in Appendix B1. A 

sub-matrix and the last row and column elements of cZ  in 

(1) are given in the following form: 

     

1 31 1 1

1 1 1 1 2 3

1 1 1 3 0 3

2

,

c c pmc c c

c c c c c c pm

c c c c p p

Z Z zZ Z Z

Z Z Z Z Z z

Z Z Z Z z z

= − 
 = = − 
  = + 

Z  (20) 

The formulas of 0pz , pmz , 3pz  are given in Appendix B2. 

 
B3. Impedance matrix 0Z  of cable outer medium: 
earth-return impedance 
The cable outer medium impedance matrix 0Z  is given in 

the following form in general. 

                  0 0
0

0 0

t

Z

 
=  
 

Z Z
Z

Z
                          (21)  

where sub-matrix oZ  is given by 
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 
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Z Z Z

Z Z Z
Z

Z Z Z

               (22) 

A sub-matrix of the earth return impedance 0Z  in (22) is 

given in the following form. 
                                    0 0jk jkZ= ⋅Z U    (23) 

0 jkZ  in (23) is the earth-return impedance between the j-

th and the k-th cables. When a cable system is overhead, 
the impedance is given by Carson [10]. When a system is 
underground, the impedance is given by Pollaczek[8]. If 
an earth is stratified, the earth-return impedance derived 
by Nakagawa et al. can be used [11]. 
A diagonal sub-matrix of 0 jkZ  in (23) for a PT cable is : 

                  0 0jk Z= ⋅Z U    (24) 

0Z  in the above matrix is the self-earth-return impedance 

of the pipe given in Appendix B3. 
 
C. Potential coefficient matrix 
The admittance matrix of a cable system is evaluated 
from the potential coefficient matrix as given in (3).  
 
C1. SC cable internal potential coefficient iP  

In the SC cable case, pP  and cP  are zero, and when the 

cable system is underground, 0P  is also zero. The 

internal potential coefficient matrix iP  is given by:  

        

1

2

0 ... 0

0 ... 0
=

... ... ... ...

0 0 ...

i

i
i

in

 
 
 
 
 
 

P

P
P

P

  (25) 

All the off-diagonal sub-matrices of iP  are zero. A 

diagonal sub-matrix expresses the potential coefficient 
matrix of an SC cable. When the SC cable consists of a 
core, sheath and armor as shown in Fig. 1(a), the 
diagonal sub-matrix is given in the following form. 

 

cj sj aj sj aj aj

ij sj aj sj aj aj

aj aj aj

P P P P P P

P P P P P

P P P

 + + +
 

= + + 
 
  

P  (26) 

3 5 7

0 1 2 0 2 4 0 3 6

1 1 1
ln , ln , ln

2 2 2cj sj aj
i i i

r r r
P P P

r r rπε ε πε ε πε ε
= = =  (27) 

 
C2. Potential coefficients of a PT cable 
The potential coefficient(P-C) matrix of a PT cable shown 
in Fig. 2 is given in the following form. 
(1) Pipe thickness assumed to be infinite 
                        i p+P = P P    (28) 

(2) Pipe thickness being finite 
(a) Underground cable: i p c= + +P P P P   (29) 

(b) Overhead cable: 0i p c= + + +P P P P P   (30) 

      = , = , =
0 0

tc cp ti t
i p c

c cP

   
   
      

P PP 0P 0
P P P

0 0 P
 (31)    

where iP : SC cable internal P-C, pP : pipe internal P-C, 

cP : pipe inner to outer surfaces P-C.  

In (33), the last columns and rows correspond to the pipe 
conductor. These should be omitted when the pipe 
thickness being assumed infinite. In (33), a diagonal sub-
matrix of iP  is given in (27) and a sub-matrix pjkP  of pP  is 

given in the following form. 
                                    pjk pjkP= ⋅P U   (32) 

pjkP  in the above equation is the potential coefficient 

between the j-th and the k-th inner conductors with 
respect to the pipe inner surface, and is given in the 
following form: 
         0 1 0 12 , 2

jj jkp jj p p jk pP Q P Qπε ε πε ε= =  (33) 

jjQ  and jkQ  are given in Appendix B1. 

A sub-matrix and the last column and row elements of cP  

in (33) are given by: 
                                      c cP= ⋅P U    (34) 

 
C3. Potential coefficient of a cable in air 0P  

The potential coefficient matrix 0P  is given, in general in 

the following form: 

                 0 0
0

0 0
t 

=  
 

P P
P

P
   (35) 

In the case of an SC cable, there is no last column and 
row, i.e. 

                        [ ]0 0=P P    (36) 

The sub-matrices of 0P  are given in the following form. 

                                   0 0jk jkP= ⋅P U   (37) 

where 0 jkP  is the space potential coefficient and is given 

for the case of Fig. 1(b) by: 

        0 0
0 7 0

21 1
ln , ln

2 2
j jk

jj jk
j jk

h D
P P

r dπε πε
   

= ⋅ = ⋅   
   
   

 (38) 

 
III. PROBLEMS AND RECENT TREND OF 
IMPEDANCE AND ADMITTANCE 
CALCULATIONS 
 

A. Problems of existing formulas and EMTP 
Cable Constants 
 

A1. Earth-return impedance of underground 
cables 
It is well-known that Pollaczek’s earth-return impedance 
formula of underground cables [8] is numerically very 
unstable. Although Wilcox derived a series expansion 
form of Pollaczek’s formula [4], similar to Carson’s one for 
an overhead line [10], there are many mistypes in the 
paper. Because of the facts, Ametani made the following 
approximation in the exponential term of Pollaczek’s 
earth-return impedance for underground cables. 
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        { } { }2 2
1exp expi j i jh h s m h h s− + + → − +  (39) 

Then the integral part becomes the same as the earth-
return impedance of an overhead line derived by 
Pollaczek and Carson [8, 10]. By adopting the infinite 
series expansion derived by Carson, the earth-return 
impedance of the underground cable is easily calculated, 
and no numerical instability arises. Thus, this has been 
implemented into the EMTP Cable Constants since 1976. 
However, the accuracy of the approximation decreases in 
a high frequency region. 
The numerical instability observed in 1970s to 1990s can 
be overcome by the advanced numerical calculation 
technology, and thus it is expected to remove the above 
approximation in the present Cable Constants. 
 
A2. The number of PT cables 
Occasionally there was a request to increase the number 
of PT cables to deal with multi-circuit gas-insulated buses 
and/or multi-circuit POF cables, for which each bus and/or 
cable is a PT cable with three-phase inner conductors. 
Theoretically, it is straightforward to re-write pZ  and cZ  

in (16) and (17) for a multi-circuit PT system, i.e.  

               

11 12

12 22

 
 
 
  

Z Z ...

Z = Z Z ...

... ... ...

 

The terms iiZ  are given as Z  in (18), and the mutual 

impedance between PT cables i  and j  is: 

                : n×n matrixijZ  

However, this necessitates complete rewriting of the 
Cable Constants which might require an enormous man-
power.In reality, a multi-circuit PT cable system composed 
of n PT cables can be dealt with as n independent PT 
cables because the pipe wall is, in general, thick enough 
and thus the mutual coupling between the i-th and the j-th 
PT cable does not influence the pipe inner conductors. 
A3. Pipe outer surface impedance 

In the PT cable formulation in EMTP Cable Constants, the 
outer surface impedance of a coaxial cable is adopted as 
the pipe outer surface impedance, because no impedance 
formula for the pipe outer surface was developed in 
1970s. Occasionally, it was criticized that the pipe outer 
surface impedance was not accurate. To respond the 
criticism, a complete solution of the PT cable has been 
derived by Amekawa et al. [12]. Thus, the impedance 
should be replaced by the complete formula. 

A4. Semiconducting layer 

There were many mails asking how to deal with the 
semiconducting layer of a cable and requesting to make 
the Cable Constants possible to deal with the 
semiconducting layers in the late 1990s from European 
EMTP users. To respond the request, the impedance 
formula of the semiconducting layer has been developed 
[13]. The formula is given as a combination of existing 
formulas in the Cable Constants. Therefore, it is not 
necessary to implement the formula into Cable Constants. 
A user can use the Cable Constants to calculate the 
component impedances iz , mz  and 0z . Then, by Excel, 

Matlab, etc., the semiconducting layer impedance is easily 
obtained in the following equation [13]. 

          ( )2
20 2 10 2semic m iZ z z z z= − −   (40) 

A5. Frequency-dependent permittivity 

There were too many requests to implement the 
frequency-dependent permittivity into the Cable 
Constants. This is theoretically very easy. That is, modify 
the code of the admittance calculation as follows: 
     ( ) ( ) ( ), ( ) ( ) ( )r ij Y G j Cε ω ε ω ε ω ω ω ω ω= + = +  (41)  

However, Ametani refused the requests. The reason is 
simple. A user can hardly obtain the frequency-dependent 
permittivity which is complex as in the above equation.  
He has collaborated with many cable manufacturers, but it 
has been impossible to obtain a complete frequency-
dependent ( )rε ω  and ( )iε ω  or tan ( )δ ω  which cover 

the frequencies required for a cable transient simulation. 
Further, it should be noted that the temperature 
dependence of the permittivity is very heavy and can be 
far more significant than the frequency dependence. 
Table 1 shows some examples of the 
frequency/temperature dependent permittivity [14]. 

Table 1. Temperature and frequency dependent 
permittivity and loss factor 

Material T (ᴼC) f (Hz) 
iε  tanδ  

Water 

1.5 
510  87 1900 

810  87 70 

25 
510  78.2 4000 

810  78 50 

85 
510  58 12400 

810  58 30 

Paper 

25 
210  3.3 58 

510  3.1 200 

810  2.77 660 

82 
210  3.57 170 

510  3.4 85 

810  3.08 680 

Ametani has never been supplied such data from EMTP 
users who have requested the frequency-dependent 
permittivity. As one of the original developers of the 
EMTP, he has experienced too many requests, comments 
and criticisms about the EMTP and the Cable Constants.  

It should be reminded that an underground cable and an 
overhead line are isolated from a conducting medium, 
while a grounding electrode is a bare conductor so that a 
fault or lightning current is flowing into the ground. The 
Line Constants and the Cable Constants of the EMTP are 
for the isolated/insulated conductor, but not for the bare 
conductor connected to or touching a conducting medium. 
However, it is easy to implement the bare conductor 
option to the Cable Constants by adopting well-known 
formulas of the grounding electrodes by Sunde [15]. 

A6. Proximity effect 

There are a number of publications discussing the 
proximity effect in a cable, especially in an SC cable of 
which the core conductor is composed of a number of 
stranded wires, sectioned as three or four fan-shaped 
blocks [1]. Stranded conductors are also used quite often 
in high-voltage overhead lines. Further, each stranded 
conductor may be enamel coated, i.e. isolated from the 
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other strands. Also, in a PT cable, the inner phase 
conductors (SC cables) are installed at the bottom of the 
pipe, and thus phase cables touch each other. 
Under the above situation, the proximity effect might 
cause a significant effect on the attenuation, the 
propagation velocity and a resultant transient voltage [16]. 
The attenuation increases and the voltage decreases as 
the eccentricity (or the proximity between cable phase and 
pipe) becomes large. As a result, a transient voltage 
waveform significantly differs from that with no 
eccentricity. 
If there is an accurate formula for internal impedance of a 
conductor considering the proximity effect, then the 
formula can be implemented by replacing the present 
impedance formulas. 

A7. Spiral wire 

It is assumed in the Cable Constants that all the cable 
conductors, such as a metallic sheath and an armour 
conductor, are of cylindrical circular shape. However, in a 
real cable, the metallic sheath is often a wire but not a 
cylinder. Also, a steel wire is often used as the armour. 
Because there is no accurate impedance formula for the 
self and mutual impedance of such a spiral wire, the wire 
has been represented by a circular cylinder of which the 
volume of the wire is the same as that of the cylinder [17], 
                ( )2 2

w w o iS l r r lπ⋅ = − ⋅   (42) 

where wS  and wl  are the cross-section and length of the 

wire and or , ir  and l  are the outer and inner radius, and 

the length of the cylinder. 
If there are accurate formulas of the wire self-impedance 
considering the spiral, and the mutual impedance 
between the cylindrical core and the spiral wire, the 
present equivalent impedance assuming a cylindrical 
sheath should be replaced. 

B. Numerical Electromagnetic Analysis 
A numerical electromagnetic analysis (NEA) is becoming 
a powerful tool to analyze an electromagnetic phenomena 
both in a steady-state and in a transient [18]. The NEA is 
a numerical approach to solve Maxwell’s equations 
directly based on the physical and geometrical 
parameters of given media together with given boundary 
conditions.  
NEC (Numerical Electromagnetic Code) is a typical 
example of software based on numerical electromagnetic 
analysis used for studying electromagnetic phenomena in 
frequency domain. Those software are based on the 
Finite Elements Method (FEM) and on Method of 
Moments (MoM). Another powerful and widely used 
approach is Finite Difference Time Domain (FDTD) 
method which solves Maxwell’s equation in time domain, 
and thus the FDTD method is quite popular for transient 
studies.  
In this section, the NEC and the FDTD method are 
explained briefly as a tool to calculate wave propagation 
related parameters and transient voltage/current 
waveforms on a distributed-parameter circuit such as a 
cable. 

B1. NEC 

NEC has been developed in the Lawrence Livermore 
National Laboratory. Because a conductor is represented 
by a combination of cylindrical segments, the NEC can 

easily deal with a conductor with an arbitrary cross-
section and also with a thin wire which causes a difficulty 
in an FDTD method [18]. However, the number of 
segments to represent a conductor with a given length 
becomes very large when the frequency of an applied 
current or voltage source is high. The segment length x∆  
should be much smaller than the wave length λ . For 
example, 50 MHzf = , 

        8 6
0 3 10 50 10 6 mc fλ = = × × =  

If the conductor length is 3000 mx = , the number of the 

segments is taken as 500X20 with 20x λ∆ = to satisfy the 

condition of x∆  being much smaller than λ  to ensure the 
accuracy of a simulation using NEC. Therefore, the 
required computer memory and computation time 
becomes very large. 

B2. FDTD 

In an FDTD method, a three-dimensional ( , , )x y z  space 

and the time are discretized to solve Maxwell’s equation 
under given boundary conditions. The discretized 
elements are called “cells”. The dimensions of the 
analytical space including a conductor, air and earth must 
be large enough and the cell size small enough for an 
accurate simulation, similarly to the segment length in 
NEC. Assume the following case: an overhead conductor 
of length 1 mx = , height 6 cmh = and radius 1 mmr =  

and an observation time 50 nsT = . Then to ensure the 

FDTD simulation accuracy, the following conditions are 
necessary: 
             1.2 m, 18 cm,X Y Z= = =  
                 1mm, 1.925 pss x y z t∆ = ∆ = ∆ = ∆ = ∆ =  

It is clear that the memory required for the analytical 
space becomes 3 61.2 10 180 180 39 10× × × = ×  and the 

number of calculations is 326 10T t∆ = × . This simulation 

takes altogether about 5 hours using a powerful PC 
(Epson Intel Core i7 Extreme). 

B3. Problems of numerical electromagnetic 
analysis 

As it is clear from the principle of the NEA explained 
above, NEA methods require a large amount of computer 
memory and CPU time. In the NEC, the total number of 
memories is dependent on the number of segments, 
which is proportional to the segment length and the 
conductor length. The higher the frequency, the smaller 
the segment length. To ensure the numerical accuracy of 
the NEC, a small segment length is essential. 
In an FDTD method, required computer memory is 
proportional to the size of the analytical space, and 
inversely proportional to the cell size which is, in theory, to 
be smaller or equal to the conductor radius. Its numerical 
accuracy is significantly affected by the size of the 
analytical space, the cell size and the computation time 
step. 

IV. CONCLUSIONS 

The impedance and admittance formulation of a single-
core coaxial (SC) and pipe-type (PT) cables implemented 
in the EMTP Cable Constants are summarized together 
with the formulas which are far more complicated than 
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those of overhead lines.  
Problems related to the formulation and the impedance 
formulas have been reviewed, and possible 
countermeasures are described. Some of the problems 
come from approximations adopted in the formulation and 
assumptions made to derive the impedance formulas. 
To overcome these problems, a numerical 
electromagnetic analysis such as NEC and an FDTD 
method are explained. By adopting the numerical 
electromagnetic analysis, many of the problems reviewed 
in the paper can be solved. However, this requires a large 
amount of computer memory and computation time. The 
accuracy is heavily dependent on the memory size, the 
segment length in the NEC, the cell size and the time step 
in the FDTD.  

APPENDIX: IMPEDANCE FORMULAS 

A. SC Cable Internal Impedance 
=conductor outer surface impedanceoz  

( ) ( ) { }0 1 2 1 0 2 1 1 0 2 1 12 1 ( ) ( ) ( ) ( )s x D I x K x K x I xµ µ π= ⋅ ⋅ ⋅ + ⋅ (A.1) 

=conductor outer insulator impedanceinz  

( ) ( )0 1 3 22 lnis r rµ µ π= ⋅  (A.2) 
=conductor inner surface impedanceiz  

( ) ( ) { }0 1 1 0 1 1 2 0 1 1 22 1 ( ) ( ) ( ) ( )s x D I x K x K x I xµ µ π= ⋅ ⋅ ⋅ + ⋅   (A.3)  
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B. PT cable 
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B3. eZ  
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Overhead Cable 
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