

1

Performance Optimization of Underground Power Cables using RTTR

Martin Olschewski and Wieland Hill

LIOS Technology GmbH Schanzenstrasse 39 51069 Cologne, Germany wieland.hill@lios-tech.com

Introduction

Distributed Temperature Sensing (DTS)

- Measures temperature profile at screen, sheath or outside
- No safe alarm thresholds because of thermal inertia of cables

Real-Time Thermal Rating (RTTR)

- Basic models defined by IEC standards and Cigre guide
- Calculates conductor temperatures and cable rating on I, T, or t

Advantages of our solution

- Enhancements of models over standards (multilayer soil model, ...)
- Conductor temperature profiles
- Non-cyclic loads / predictions using load profiles
- FEM validation of models / real-time rating accuracy
- Enhanced visualization

Introduction – Fibre Positions

- Fibre integrated in the screen or at the sheath perfect for RTTR
- Other fibre locations as shown in the picture m be used in our engine

Reduced accuracy in case of:

- Soil in between cable and fibre with less accurately known thermal parameters
- Cables without fibres

Flat Formation (touching) e) 1) g) Flat Formation (not touching)) j) k) Flat Formation in pipes (exact position is not defined) 1) m) () () () () () () () () () () () () () (x x ulso be between the cabl
e) f) g) Teat Formation (not touching)) j) k) e) O O O O O O O O O O O O O O O O O O O	x x ulso be between the cabl
Flat Formation (not touching)) j) k)	Iso be between the cabl
) j) K) Image: Constraint of the product of th	Iso be between the cabl
Flat Formation in pipes (exact position is not defined)) m) () () () () () () () () () () () () () (
000 000	

Introduction – RTTR Procedure

- Calculation of conductor temperature profiles along the cable
 - DTS temperature and load histories (no cyclic approximations)
 - Thermal models of cables
 - Optional point temperature sensors
- Calculation of ambient parameters (Tamb, Rho_soil)
- Predictions on conductor temperature, time and ampacity
 - Constant or variable load
- Triggering of pre-alarms and alarms
- Transmission to SCADA
- Visualization of measurement and rating results / alarms

Multilayer Soil Model

- No equivalent circuit for soil definded by IEC 60853, but time-dependent resistance with different approximations depending on duration
- RC-ladder soil models developed by the Polytech Institute of NY University
- Transients from 5 layer model agree well with FEM simulations

FEM Validation of Thermal Models

- Finite element method (FEM) allows precise modelling, but is to slow for real-time
- Thermal modells of RTTR are validated by comparison with FEM for various load scenarios
- Comparison of conductor temperatures shows no significant difference

Conductor Temperatures

- Tc profiles along entire length of cable
- Locations of maximum DTS and conductor temperatures may be different
- (external heat, cable, installation,..)
- Positions with maximum Tc per thermal section used for safe predictions

- Differences between measured and calculated Tc mainly related to
 - Inaccuracy of DTS and thermocouples

٠

- Deviations of cable and laying from model
- No significant difference between RTTR and FEM results

8

Fitting of Ambient Parameters

- Ambient temperature and thermal resistivity of soil not precisely known
- Both parameters vary considerably with the seasons
- RTTR engine determines parameters from temperature and load histories before calculating predictions
- Measured ambient temperatures can be considered as starting point of fit

Temperature Prediction using a Current Profile

- Current profiles from last 24 hours or from database may be used
- Tc is predicted as function of time
- Alarming is triggered based on maximum Tc within prediction period

Visualization of Rating Results

Rating summary

a Rating Summ	nary [Circuit A]				-	00 I
	Measured Temperature	Conductor Temperature	Current	Steady State Ampacity		
0	40 60 80 100 24.8°C	2040 60 80 100 27.1°C	0250 ⁵⁰⁰ 750 1000 104A	500 ¹ 009500 2000		
	Hot Spot Position	Loss Load Factor µ	Cyclic Rating Factor M	Relative		
	230m	0.50	1.36	11%		
24:00h	98.0°C	2275A				
Time 24:00h	Temperature 90.0°C	Current 2275A				
lime						
Time	Temperature	Current				
127:43h	90.0°C	2000A				
Temperature						
Time	Temperature	Current				
	78.9*0	Daily cycle (Mo-Fr)				
24:00h		Last 24 hours				
24:00h 24:00h	80.0°C		Last 24 ho	urs		

•

Enhanced view

DTS/RTTR enables safe operation of power cables at high load by

- Monitoring conductor temperatures for all locations
- Predictions using arbitrary load curves
- Triggering of pre-alarms and alarms

