A Fundamental Study on Electrical Properties of Reactor-made Thermoplastic Olefin for the Eco-friendly Power Cable. (case study of on-going research)

Prof. LEE, JUNE-HO

leejh@hoseo.edu

HOSEO UNIV., KOREA

Backgrounds

XLPE Non-cross linked polymer Thermoplastic in electrical and mechanical Difficult to recycle Thermosetting Easy to recycle Eco-friendly

In this work

- Thermoplastic olefin samples containing the polypropylene(PP) and ethylenepropylene copolymer which were made in the reactor simultaneously were prepared to test.
 - AC Breakdown (ACBD) Test
 - Accelerated Life Test (ALT)
 - Water Tree Test
 - Space Charge Distribution Test

Samples

The process of reactor-made thermoplastic olefin(RTPO) can make the size of EPR smaller and control the size distributions of EPRs effectively.

SEM of a sample tested

		Thickness			
	Samples	ACBD	ALT	Water Tree	Space Charge
	XLPE (reference)	210+20[]		950±10[]	200±10[]
\	Eco-friendly polymer Group N2				ουυ±1υ[μπ]
	Eco-friendly polymer Group N2	210±20[μm]		850±10[μm]	800±10[μι

***** McKeown electrode used

McKeown electrode

<Structure of McKeown electrode>

<Actual picture of McKeown electrode>

Electrodes for breakdown test

- McKeown electrode (feasibility and easiness for application)
- > Molded electrode
- > Recess electrode

Advantages of McKeown electrode

- ➤ Improve the accuracy of the sample thickness measurement.
- Receive only little effect by interface and surrounding mediums.
- > Calculate the exact breakdown field.
- > Remove air bubbles in the epoxy into a vacuum treatment.

AC Breakdown test

ACBD test

Results of AC breakdown test

Group N2 vs. XLPE

sample		
N21	6.2	298
N22	6.5	338
N23	6.7	229
N24	6.5	340
N25	6.7	349
XLPE	11.2	364

 η : scale parameter

- Characteristics electrical field

 β : shape parameter

- Slope of the line

Results of AC breakdown test

Accelerated water treeing test

Water Tree test cell

<One side of the sample>

<The opposite side of the sample>

Jicable HVDC'16 WORKSHOP

Sample	XLPE Group N1 Group N2	Time	300[hr]
Aqueous solution	NaCl	Pretreatment	20[torr]
E-field	10[kV/mm]	Frequency	400[Hz]

case of 400[Hz], the accelerating factor of 6.67 than 60[Hz].

Workshop Jicable HVDC'16, Friday, August 26, 2016 - Paris - France

Results of water tree test (XLPE)

< Water Tree degraded XLPE >

Workshop Jicable HVDC'16, Friday, August 26, 2016 - Paris - France

Top view of water treed samples (Group N2)

Cross section of water treed samples (Group N2)

< N22 >

In case of N23, the sample cross section was so opaque that we could not the check

Group N2

Water Tree was not observed on the cross section

Accerelated Life Test (ALT)

Accelerated Life Test

Workshop Jicable HVDC'16, Friday, August 26, 2016 - Paris - France

Results of the ALT

At 22kVrms stress

η : Characteristics life time

Results of the ALT

At 26kVrms stress

Results of the ALT

Space Charge Distributions (by PEA method)

Results of space charge distribution

DC E-field profile for space charge test

Workshop Jicable HVDC'16, Friday, August 26, 2016 - Paris - France

Results of space charge distribution

- ➤ Right after grounding, the space charge distributions from all the samples of group N2 except N23 was smaller than that of XLPE.
- > After 12 hours grounding, the accumulated space charge in group N2 disappeared rapidly in contrast to the XLPE.
- > Samples in the group N2 showed better space charge distribution properties than that of XLPE.

Summaries and Questions

Based on basic measurements of electrical properties

For the reliable application of recyclable polymers to the power cable

Deeper understanding based on the fundamental research is needed

Mechanism of treeing initiation and growth(water treeing/ electrical treeing)

- Why the water treeing is not observed in recyclable polymers?
- Staining method? Too fine channel? Water treeing retarded?

The <u>ALT</u> might be a second-best way to give a statistical results to evaluate the long-term performance of new materials

What makes the difference of spacecharge among the samples?

- Size of copolymers/ size distributions/ catalysis of process
- Heat treatment/ Anti-oxidants/ etc.

Thanks for your kind attention