WETS 15 2.1 Barber



#### Issues related to long lenght HVAC cables Implementation and practical experience





# **RELIABILITY of SUPPLY**

#### WG B1.47

Convener: Ken Barber (AU) Secretary: Gert Aanhaanen (NL) U.K. Representative: Francis Waite (UK)

## WETS'15 Workshop

Organization: Jicable and Prospective 2100 Palais des Congrès de Versailles, France Thursday, 25 June 2015

# Long AC Cable links - Circuit Reliability

- Reliability is a mixture failure / defect and length of outage
  - Causes extra costs to fix
  - Can cause blackouts
- Failure (some effect reliability more than others):
  - Some cause forced trip, others require outages
  - Some cause safety concerns that lead to outages on other circuits for checks
  - Generally single circuit, but can be double circuit, or worse
  - Defects, generally less problematic than failures but:
    - Design defects may require widespread system outages to fix
    - Hidden defects can be worse than a failure (some become a failure only when the system is already depleted e.g. London blackout, Auckland blackout...)
- time of outage
  - Length of outage following failure or to repair defect

•

٠

# Published failure rates CIGRE TB 379

- No universal failure (or defect) definition. Can be system focused (causes outages), function focused (system stops performing function), or other (requires replacement)
- CIGRE TB 370 Text:
  - 1. Instantaneous failure leading to automatic disconnection
  - 2. Occurrence requiring subsequent unplanned outage
- CIGRE TB 370 questionnaire:
  - TB 370 did not publish the questionnaire so it is not clear what the actual definition used was
- CIGRE TB 370 results
  - Internal faults
  - External faults
- For the next slide just used overall reported failure rate for XLPE land cables with voltage 60 kV to 500 kV (but what does the rate really means?)

٠

Failure rate of a cable circuit



# Impact of long lengths

- As cable circuits increase in length they will be more unreliable as they have more cable and joints
- CIGRE statistics suggest that the joints are more problematic than cable
  - For submarine cables with longer cable sections this will be less of a problem
- Safety will not be a greater concern for buried cables (same number of terminations as short routes)
- . Tunnel installations suffer
  - Potential for multiple circuit failures (e.g. fire)
  - Failure of one component leading to limited access due to safety

## **CIGRE TB 379 Repair Times**

#### Table 15d Average repair time – mode of land installation

| Average Repair time in Days per Mode of Installation |               |                      |  |  |
|------------------------------------------------------|---------------|----------------------|--|--|
| >1day and <6months                                   | Direct Burial | Ducts/Troughs/Tunnel |  |  |
| 60 to 219 kV                                         | 14            | 15                   |  |  |
| 220 to 500 kV                                        | 25            | 45                   |  |  |

Why is there now such a significant interest in Long Length AC transmission Power Transmission by insulated cables. Some of the reasons being:-

- > Now very possible with new cable designs and materials
- Need to transfer power from renewable energy sources to the grid in the most economical manner
- > Need to provide electric power to remotely located plants
- > Often there are difficulties in obtaining approvals for OHL
- Offers quicker implementation time than using OHL
- > Now lower cost differential between Underground and OHL
- Need for lower system/network power losses
- Environmental issues and community support

## > IMPROVED RELIABILITY

#### Progress with the introduction of long length AC cable links

The definition of A long length of insulated cable:-

- is one where the load due to the capacitive current needs to be taken into account in the system design.
- typically this would be 40 km for voltages less than 220 kV and 20 km for voltages above 220 kV.

| `     | Years | Period    | Projects | Links km | Cable km |
|-------|-------|-----------|----------|----------|----------|
| 1967  | 1997  | 30 years  | 13       | 398      | 458      |
| 1997  | 2007  | 10 years  | 12       | 537      | 681      |
| 2007  | 2012  | 5 years   | 20       | 1122     | 1343     |
| 2012  | 2015  | 3 years   | 22       | 1349     | 1947     |
| 2015  | 2016+ | From 2015 | 13       | 556      | 1069     |
| Total |       |           | 80       | 3962     | 5497     |



Page 8

## **CURRENT STATE of DEVELOPMENT Reasons for Growth in demand**

- Possible 50 years ago but now more practical with new cable designs, materials, accessories & installation methods
  - Improved overall performance of cables and accessories
  - Cost of supply and installation significantly lower
  - Availability of Monitoring systems
  - Net effect is improved reliability of supply
- > Transfer power from renewable energy sources to the grid
  - Demand for offshore wind farms
  - Limited space on Offshore platforms for other options
- > Need to provide electric power to remotely located plants
  - New Mine sites, Desalination plants
  - Need for lower network losses net effect on energy cost
- Difficulties in obtaining approvals for Overhead Lines (OHL)
  - Quicker implementation time than using OHL
- Environmental factors
  - Climatic conditions and security of supply

## **CURRENT STATE of DEVELOPMENT Modern Cable & Installation Technology**

## HVAC Cable design

- Significant improvements made in Fluid Filled cables
  - However manufacturing, installation and maintenance costs are now generally higher than for XLPE cable systems.
- Modern XLPE cables
  - Lower dielectric losses than the older fluid filled cables
  - Operating temperature of XLPE cable is higher.
  - Net result is ratings much improved
  - These cables can be made and installed in long lengths
  - No concerns about changes in ground level and oil pumping
- Significant experience in manufacture of XLPE cables & accessories.
  - There are now more than 100 cable plants worldwide making HV & EHV AC cables

## **CURRENT STATE of DEVELOPMENT**

Advances in associated equipment and overall reliability of supply

#### Associated Equipment

- Joints & Terminations
  - Premoulded i.e. prefabricated
- Surge Arrestors & SVL's
  - **Z**nO
- Reactive Compensation
  - Reactive power compensation devices low losses
- Harmonic Filters
  - Required for long AC links connected to the grid

## Reliability of Supply

- Prequalification test
  - Well established requirements
- Site Testing
  - New low frequency devices can test long lengths of AC cable
- Monitoring
  - Inclusion of Optical fibre in Cable > 30 years experience

## **CHALLENGES for IMPLEMENTATION**



#### Effect on the grid

• Matching ratings .

## Protection systems

Auto reclosing as used on OHL

## Voltage effect

Ferranti effect - mitigation

## Harmonics

• Filters

## Mitigation of EMF

Installation arrangement

Life time expectancy

• Reliability – monitoring .

# Monitoring – ON LINE real time provides reliability of supply



#### Partial Discharge

- P.D, sensors at joint locations
  - Normally for commissioning only

#### Temperature – Distributed Temperature Sensing

 Well established technique using Optical fibres within the cable is now available for very long lengths

#### Monitoring of Condition of SVL's in Link boxes

- Now being done for some circuits
- Monitoring of sheath condition
  - Sheath condition monitoring systems beginning to be developed
- Monitoring of possible cable disturbance
  - New systems using Optical Fibre cables can detect acoustics
  - AIS systems for submarine cables in use.

# Maintenance and Impact on Reliability



Route information Now available in GPS format Fault location systems Land & submarine options **Rapid repair options**  Land & Submarine solutions developed

#### Long length AC links by Country

| Νο | Country         | Number of Links | Circuit Length km | Cable length<br>km |  |
|----|-----------------|-----------------|-------------------|--------------------|--|
| 1  | Australia       | 2               | 116               | 116                |  |
| 2  | Belgium         | 2               | 94                | 94                 |  |
| 3  | Canada          | 2               | 76                | 114                |  |
| 4  | China           | 1               | 32                | 32                 |  |
| 5  | Denmark         | 5               | 308               | 355                |  |
| 6  | France          | 6               | 214               | 279                |  |
| 7  | Germany         | 4               | 229               | 229                |  |
| 8  | Italy           | 2               | 173               | 221                |  |
| 9  | Japan           | 9               | 267               | 590                |  |
| 10 | Korea           | 1               | 22                | 66                 |  |
| 11 | Netherlands     | 2               | 122               | 244                |  |
| 12 | Norway          | 4               | 399               | 399                |  |
| 13 | Saudi Arabia    | 5               | 246               | 317                |  |
| 14 | Spain           | 5               | 296               | 422                |  |
| 15 | Sweden          | 3               | 162               | 162                |  |
| 16 | Tanzania        | 1               | 75                | 75                 |  |
| 17 | Thailand        | 1               | 55                | 55                 |  |
| 18 | Tunisa          | 1               | 25                | 25                 |  |
| 19 | Qatar           | 1               | 102               | 203                |  |
| 20 | United Emirates | 1               | 42                | 42                 |  |
| 21 | U.K.            | 14              | 646               | 1157               |  |
| 22 | U.S.A.          | 7               | 207               | 245                |  |
| 23 | Vietnam         | 1               | 56                | 56                 |  |
|    | Tota            | al 80           | 3964              | 5498               |  |

# Long Length AC links by Voltage

| Cable Voltage   | No of | Total km |      |  |
|-----------------|-------|----------|------|--|
|                 | LIIKS | Links    |      |  |
| >33 kV <170 kV  | 35    | 2299     | 3075 |  |
| >170 kV <380 kV | 34    | 1298     | 1860 |  |
| >380 kV <525 kV | 11    | 365      | 562  |  |
| Total           | 80    | 3962     | 5497 |  |

#### Summary of some of the challenges for Implementation

- Cable Design
  - Choosing the best cable design for a LONG LENGTH AC Link
- System design issues
  - Selecting the best voltage
  - Consider frequency of supply e.g. 60, 50 or 16 Hz.
  - Matching the power rating for hybrid circuits
  - Acceptance of cyclic ratings thermal delay for cables
  - Protection system arrangements Cable vs. OHL,
  - Controlling EMF easier for cable than OHL ,
  - Controlling future changes in route to ensure circuit rating
  - Amount of reactive compensation location
  - Impact on other network components
  - Sheath bonding for long lengths acceptance of voltage levels
  - Reliability repair times for underground cable

#### Summary of challenges for Implementation (cont.)

- Installation
  - Rights of way.
  - Remote areas transportation issues
  - Inductive coupling with OHL safety
  - Thermal mechanical forces from long straight cable lengths
  - Commissioning Testing- voltage & frequency.
- Monitoring
  - Long distance Distributed Temperature Sensing with OFC
  - Monitoring of Sheath Link box SVL's
  - Sheath condition monitoring.
  - Control of route condition AIS and Acoustic
- Maintenance
  - Fault location methods and automation
  - Access to route information GPS data
  - Methods to reduce repair times outage in case of cable damage
    Page 18
    Cigré SCB1