With the support of CIGRE Committee B1 : Insulated Cables ### **WETS'15 QUESTIONNAIRE** WETS'15 World Energy Transmission System ### Form N° ... # Achievement and experience in service of long length (> 10 km), HV, EHV and UHV electrical links by AC and DC insulated power cables The results of the surveys for WETS'05 / WETS'07 / WETS'11 are available on the site jicable.org page Workshops. See also CD Roms WETS'07 and WETS'11 #### Contact: Name: Yoshihisa Surname: Takahashi Company: JAPAN Address: 1-3 CHISAIWAI-CHO 1-CHOME CHIYODAKU TOKYO 100-8560 Tel.: +81-3-6373-3806 Fax: +81-3-3596-8527 Email: takahashi.yoshihisa@tepco.co.jp ## 1 – HV, EHV and UHV Insulated power cables AC links | 1.1 - Geographical situati | on of the link | |---|---| | Country: | JAPAN | | Area : | Waterfront areas along Tokyo Bay | | 1.2 – Characteristics of th | e link | | Network : | Tokyo Electric Power Company | | Link name : | Kawasaki-toyosu Line | | Nominal power (MW): | 492MW | | Nominal voltage (kV): | 275kV | | Link length (km): | 22.2km | | Number of circuits : | 1 cct | | 1.3 – Characteristics of th | e cables | | Manufacturer(s) Installation: undergrous submarine (embedding Manufacturers : J-pow | XLPE Cable nd (in tunnels, in ducts, in concrete, directly buried) g depth, cable protections) er systems • Viscas ground(in tunnels), underbridge (in duct) | | Yes: ✓ , type: 0 | Cooled Water circulation (Tunnel,Trough) | | Insulating material: polymer, paper, | XLPE | | Metallic screens bonding: | Aluminum Solidly earthed system (Cross-Bonding) | | Lineic inductance: | 367μH/km | | | Lineic capacitance: Testing of the link (before commissioning, and during operation): | 242nF/km
Before commissioning | |-------|---|--| | 1.4 - | - Is a compensation o | of the reactive power achieved? | | | Yes: ✓ | No: | | | Why?: | | | | Position of the compe
At the end, intermedia | nsation :
ary, Why? At the end | | 1.5 - | - Characteristics of t | he compensation | | | Nominal power (Mvar) : | 150 Mvar | | | Technology: | Shunt reactor | | | Occupied space (m ²): | | | | Cost (€ or US\$) : | | | 1.6 - | - How are considered | d the problems of cable integration into the system? | | | - Stability of voltage a | nd frequency: | | | - Propagation of slow | transients, resonances: | | | - Distribution of currer | nts related to the different impedances | | | | | | | | | | | | | | | | | | 1.7 – Operating results of | the compensated link. | | |--|--|----| | Technical and econom | ical performances : | | | | | | | | | | | 1.8 – Publications or avai | lable documents concerning this link: | | | | | | | | | | | | | | | | | | | 2 – HV, EHV an
links | d UHV insulated power cables [|)(| | There are no application. | Unfortunately, no information can be provided. | | | 2.1 – Geographical situati | on of the link: | | | Country: | | | | Area : | | | | 71.04 : | | | | 2.2 – Characteristics of th | | | | | | | | 2.2 – Characteristics of th | e link: | | | 2.2 – Characteristics of th Network: Link name: | e link: | | | 2.2 – Characteristics of the Network : Link name : Nominal power (MW): | e link: | | | | ground (in tunnels, in ducts, in concrete, directly buried) dding depth, cable protections) | |---|---| | Forced cooling: | | | | oe : | | No: Insulating material polymer, paper, | | | Characteristics of accessories: Testing of the link (before commissioning, ar | | | during operation): | | | - What are the rea | sons for choosing this technology? | | | | | | | | | lifficulties of integration of the conversion station in
lutions (problem of protection of the link and of | | .6 - | - Operating results of the link: | |-------|--| | | DC link and Converters:DC | | | | | | | | 2.7 - | - Publications or available documents concerning this link: | | | | | | | | | | | | General issues concerning terrestrial or bmarine insulated power cables AC or DC links | | | - What is the logistics of major projects and planning issues in particular case of tunnel (e.g., the problem of routing of large drums)? | | | | | CC | - What are the results of studies on the failure rate of these links taking into
bunt the number of joints (elementary sections related to the capacity on
ms). What is the estimated reliability of these links? What repairing | | 3.3 – How did react suppliers in terms of availability and responsiveness to different phases: design, supply, repair? | the | |--|------| | | | | 3.4 – Are there any diagnostic methods for assessing the health status of submarine link of 100 km? | of a | | N/A | | | 3.5 – What are the acceptance tests for significant long length links? | | | | | | 3.6 – What are the technical solutions to realize links with three ends? | | | N/A | | | | | 3.7 – What is estimated cost of the investment and operation of these links (the distribution of these costs to the supply, installation work and assembly / test)? |
 |
 |
 | | |------|------|------|--| | | | | | | | | | | | | | | | * * * * * * * *