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ABSTRACT 

The computation of sequence impedances is a very 
important topic for insulated cable systems chiefly in HV 
and EHV levels. Both in planning and operating activities, 
power flow and short circuit studies are always based on 
the knowledge of sequence impedances. Furthermore, 
the correct behaviour of network protection (mainly 
distance relays) is strictly depending upon their correct 
settings which are based on positive-negative and zero 
sequence impedances. Moreover in the planning phase of 
a new cable link power flow and short circuit studies are 
always based on the knowledge of sequence 
impedances. This highlights the importance of using 
reliable procedures in order to compute these impedances 
since, up to now, their computations are based on 
simplified formulae. One of the authors has already 
presented some papers [1, 2, 3] which allow studying 
cable systems by means of the multiconductor cell 
analysis (MCA). This method considers the cable system 
in its real asymmetry without simplified and approximated 
hypotheses. One of the advantages of the MCA is the 
possibility to supply the cable system with three sequence 
voltage phasors and to compute the ratios between 
voltage and current phasors for each phase.  
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INTRODUCTION 

The use of zero, positive-negative sequence impedances 
Z0, Z1, Z2, is only exact if the system is symmetric since 
the application of voltage phasors of a sequence causes 
the circulation of current phasors only of the same 
sequence so that it is possible to compute the ratios 
between voltage and current phasors. For cable lines, this 
assumption is only true if the insulated cables are cross-
bonded with phase transpositions (PTs) or if they are 
cross-bonded in trefoil arrangement. In all the other 
cases, the use of sequence impedances Z0, Z1, Z2 would 
be theoretically mistaken. Even if the insulated cable is 
cross-bonded with PTs (or in trefoil arrangement) there 
could be causes of asymmetry: 
 

� minor sections with different lengths, so that the 
induced currents in the screens are not zeroed; 

� the presence of joint chambers and terminals 
which introduce a flat arrangement and a 
consequent asymmetry; 

� crossings of possible interfering services or 
natural obstacles usually overcome by means of 
directional drillings which can introduce a great 
spacing between the cables;  

 

If the line length is long enough, the presence of these 
installation differences can become less important but 
theoretically they would give always an asymmetric 
system. In this context, as already highlighted, it would not 
licitly possible to refer with precision to sequence 
impedances.  

BRIEF RECALLS TO THE MCA  

The whole exposition of the general procedure can be 
found in [1, 2] or, with a more didactical approach, in the 
book [3]. In the following only a brief synopsis is provided. 
Let us consider three single-core cables (3 phases and 3 
screens for a total of 6 conductors parallel to themselves 
and to the ground surface where earth return current 
flows) with total length d (see Fig. 1) and a stretch of 
length ∆

l
 between the two sections S and R composed of 

6 conductors; if d>>∆
l
, the border effects can be 

neglected. In such a case, the treatment (given by Carson 
[4], Pollaczek [5]), shows (if the transversal couplings due 
to the phase-to-screen and screen-to-earth conductive-
capacitive susceptances are treated separately) how the 
longitudinal ohmic-inductive self impedances zi,i and 
mutual impedances zi,j of n conductors (n=6 in the present 
case) can be computed, considering also the 
electromagnetic field inside the earth; once zi,i and zi,j have 
been computed, it is possible to form the matrix ZL (6×6) 
and to characterize, by means of the relation (1), the 
steady state regime of longitudinal block L of Fig. 2 
(where the voltage column vectors uS, uR and the current 
column vectors iS, iSL, iST, iR, iRL, iRT are shown):  
 
uS-uR= ZL iSL ,                                       (1) 
 
and by considering the obvious relation (2) 
 

iRL ≡ – iSL                                                                                                             (2) 
 
it yields, (being ZL not singular)  
 
ZL

-1uS  -ZL
-1 uR  =iSL                                                         (3) 

-ZL
-1uS+ZL

-1uR    =iRL        .                                               (4) 
 

Hence the following matrix relation (5), where YL∆∆∆∆ (12×12) 
regards the block L circuit formed by the 6 longitudinal 
links, can be written:  
 

                                    (5) 
 
In particular, it is important to mark the directions of the 
currents in correspondence to S and R (both towards the 
circuital block) since the study will be developed by 
means of models identified by nodal admittance matrices.  
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