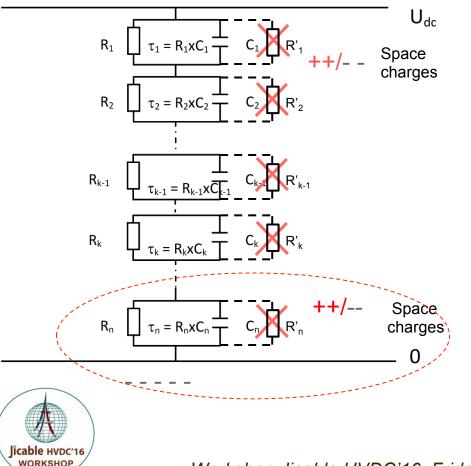
1.6 - JIC HVDC 16 Topic 1/2 Karlstrand

SENSITIVITY OF HVDC EXTR CABLE SYSTEM AND IMPLICATIONS ON TESTING


PARIS 26 AUGUST 2016, WORKSHOP JICABLE HVDC

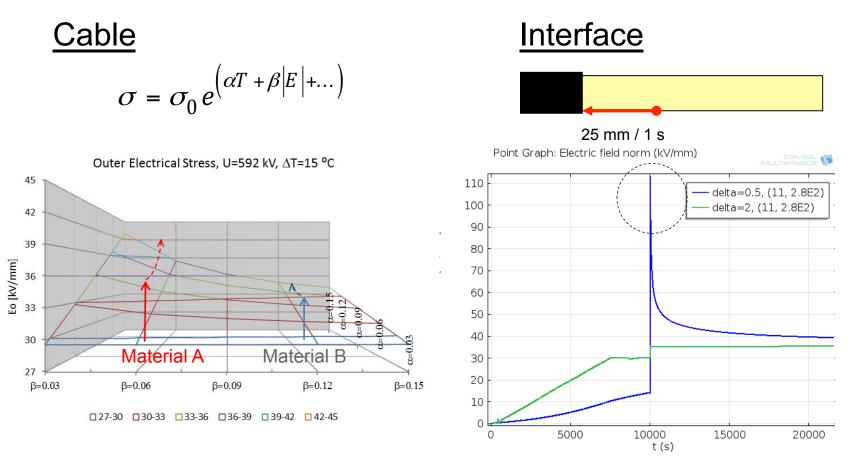
Johan Karlstrand JK Cablegrid Consulting AB

DC Cable Insulation Model

- Under DC, the electrode charges are constant in the stationary case but not constant during transient periods
 - the charges have time enough to move through the very high insulation resistance in sometimes a very complicated manner.
 - Some charges may "remain" in parts of the insulation and create a complicated field distribution due to "space charge build-up".

Typical BD location in HVDC termination (joint)

Build-up of charges along interface



Typical DC breakdown some cm's from OSC screen edge

Example - sensitivity of α and β in cable and interfaces

Background and Questions

• Background:

A requirement for U > 320 kV, preventing thermal run-away, is a sufficiently low conductance. The interfaces/accessories seem however primarily being dependent on other mechanisms. The cable/interface characteristics is most likely dependent on both cable and interface quality, leaning at higher importance put on the cable characteristics. AC-materials have quite equal material characteristics. DC-materials are numerous now and completely different from each other, especially due to "unknown" time constants etc.

- <u>Questions:</u>
 - Can all HVDC materials be treated under the same system umbrella, i.e. the same TT and PQ requirements for > 320 kV?
 - 2. What are the interface implications on the long term effects at U > 320 kV especially for low conductive DC-materials?

Johan Karlstrand

JK Cablegrid Consulting AB karlstrand@cablegrid.com