

WETS D'15 2.4 Drapeau

A Study on the Effect of Performing VLF Withstand Tests on Field Aged Degraded Joints

Jean-François DRAPEAU

Researcher Expertise Équipement électriques IREQ <u>Jacques CÔTÉ</u>, HQD <u>Simon BERNIER</u>, IREQ

Jicable'11 21 June 2011 Versailles, France

OUTLINE

- Context & Introduction
- Objectives of the study
- Test Samples
- Experimental Protocol
- Results for Joints: Type A
- Results for Joints: Type B
- Results Wrap-up & Issues
- VLF Diagnostic Interpretation: Application to a Cable System Typical to HQD
- Summary

1- CONTEXT & INTRODUCTION

- Context: Field withstand testing at HQD: --> introduction of VLF considered
- Initial assumption: --> parameters from IEEE 400.2 (For 25 kV system: VLF Sine 0.1 Hz 23 kV 30 min)
- Question: What effect will have VLF withstand testing on degraded joints present in the MV underground system ?
- Before proceeding to implementation, better to collect a max. of testing data in the lab.

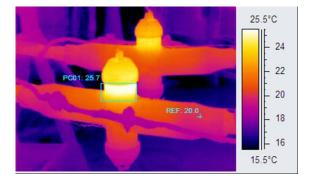
2- OBJECTIVES OF THE STUDY

Verify and quantify the influence of performing VLF-TD withstand testing (according to IEEE 400.2)

on joints identified as severely degraded

in term of dielectric loss and local temperature elevation

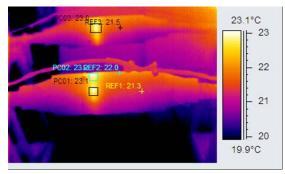
- Have a "first sight" of what would be the expectable outcomes of VLF withstand tests performed in the field on HQD cable system
 - --> Pass / No pass
 - --> Tan δ readings from monitored withstand
 - --> Interpretations on diagnostics


REMINDER: purpose of a withstand test

- Application of voltage above normal operating voltage for a prescribed duration
- Attempts to drive weakest location(s) within cable segment to failure while segment is not in service

---> without causing any further degradation to the other components which are aged, but still in good condition

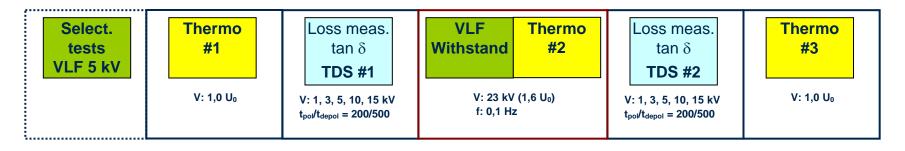
Request for targeted joint samples extraction


- --> 2 types of joints know as most critical in HQD underground MV system
- --> Joints identified with thermal anomalies

Type A

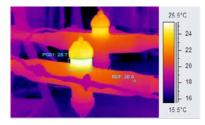
Disconnectable straight joint with taps design

Premolded straight joint design


4- EXPERIMENTAL PROTOCOL

Protocol: On a number of joints with various degradation levels:

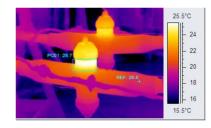
- 1. Selection tests (30 joints out of 60)
- 2. IR thermography (init. cond.)
- 3. TDS characterization (init. cond.)
- **4.** VLF withstand (IEEE 400.2: 23kV 30 min) --> Monitored tan δ + IR thermography
- 5. TDS characterization (post)
- 6. IR thermography (post)


VLF withstand test

Post-characterization

CLASSIFICATION: "Effect of VLF withstand" on jointsLevelThermal anomalyDielectric lossevolutionevolutionevolution

Prevailing parameter						
JOINT CONDITION EVOLUTION IMPACT IS :	Criteria for "thermal anomaly" ev Value of "Δ [ΔT]" Sum for all the hot spots (HS) occurring on the same joint (°C) (%)	Criteria for TDS loss evolutions Δ [tan δ _{mean}] (%)				
STRONG	Criteria for Δ [Δ T] & Δ [tan δ_{mean}] t.b. dete	(%) ermined				
(=FAILURE)	or Failure occurrence					
SIGNIFICANT	$\Delta[\Delta T] > 0.5$ or $[\Delta[\Delta T] > (0,1 X \text{ nb} \text{Hs}) \text{ and } \Delta[\Delta T] > 50\%]$	ar	nd $\Delta TD \geq 200\%$.			
Some	$(0.1 \text{Xnb}_{\text{HS}}) \le \Delta[\Delta T] \le 0.5 \text{ and } \Delta[\Delta T] \ge 20\%$	<u>or Δ[ΔT]</u> >40% a	nd $100\% \leq \Delta TD \leq 200\%$			
VERY LIGHT	$(0.1 Xnb_{HS}) \le \Delta [\Delta T] \le 0.5$ and $\Delta [\Delta T] \le 20\%$		or $20\% \le \Delta TD \le 100\%$			
None	$\Delta[\Delta T] \leq 0.1 (Xnbhs)$	a	nd ΔTD < 20%			
REDUCED SIGNS OF DEGRADATION	$\label{eq:lambda} \begin{array}{ c c c c c } \hline \textbf{Evolutions showing negative values : e.g0,4\%} \\ \hline \textbf{\Delta}[\textbf{\Delta}\textbf{T}] > (0.1Xnb{\rm Hs}) \\ \hline \textbf{and} \textbf{\Delta}[\textbf{\Delta}\textbf{T}] > 20\% \end{array}$		nd $\Delta TD \ge 20\%$			



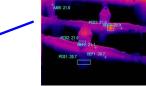
JOINT SAMPLE	Initial cond. VLF Tan δ	ΔT variation	TDS Loss Variation	EVOLUTION
	$a 5 \text{ kV}(X 10^{-3})$	Δ(ΔΤ)	(%)	Impact is :
06-A	7932	+1.3°C/+27%	+20%	Significant
16-X	4329	+0.3°C/+11%	+149%	Some
20-X	3239	-1.6°C / -59%	+8%	Reduced signs of degradation
20-Z	2738	+1.2°C / +133%	+109%	Significant
20-Y	2705	+3.2°C/+168%	+182%	Significant
14-X	2014	-0.8°C / -57%	+47%	Reduced signs of degradation
19-X	1597	-0.6°C / -38%	+6%	Reduced signs of degradation
18 - Y	1036	+0.3°C / +21%	+27%	Some
14 - Z	918	0.0°C / 0%	+40%	Very light
18-Z	784	-0.1°C / -16%	+35%	Very light
14 - Y	743	-0.1°C / -16%	+52%	Very light
13-Y	358	-0.2°C/-33%	+13%	None
18-X	295	0.0°C / 0%	+71%	Very light
19 - Y	128	N/A	+50%	Very light
06-C	58	+0.4°C/+67%	+601%	Significant
16-Y	7	N/A	+10%	None

Impact of VLF withstand

Observations: (General)

- NO failure
- Impact level of VLF withstand show an evolution consistent with initial condition of the joint
- --> varies rather "smoothly" from "significant" down to "none"
- When initial condition of the joint is good
 ---> No significant impact

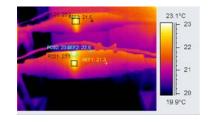
JOINT SAMPLE	Initial cond. VLF Tan ð @ 5 kV(X 10 ⁻³)	ΔT variation $\Delta (\Delta T)$	TDS Loss Variation (%)	EVOLUTION Impact is :
06-A	7932	+1.3°C/+27%	+20%	Significant
16-X	4329	+0.3°C / +11%	+149%	Some
20-X	3239	-1.6°C / -59%	+8%	Reduced signs of degradation
20-Z	2738	+1.2°C / +133%	+109%	Significant
20-Y	2705	+3.2°C / +168%	+182%	Significant 🚽
14-X	2014	-0.8°C / -57%	+47%	Reduced signs of degradation
19-X	1597	-0.6°C / -38%	+6%	Reduced signs of degradation
18-Y	1036	+0.3°C / +21%	+27%	Some
14-Z	918	0.0°C / 0%	+40%	Very light
18-Z	784	-0.1°C / -16%	+35%	Very light
14 - Y	743	-0.1°C / -16%	+52%	Very light
13-Y	358	-0.2°C/-33%	+13%	None
18-X	295	0.0°C / 0%	+71%	Very light
19-Y	128	N/A	+50%	Very light
06-C	58	+0.4°C / +67%	+601%	Significant 🧲
16-Y	7	N/A	+10%	None


Impact of VLF withstand

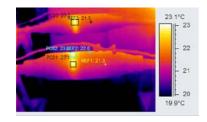
Observations: (Particular)

- 3 samples showing "reduced signs of degradation"
- Anomaly = localized "spot" in the "tap"

 Anomaly = localized "spot" in the insulation body

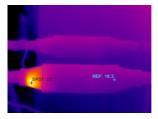

Localised anomalies are associated with "significant" impact

Impact of VLF withstand


Observations: (General)

- Among 6 "bad", there are 4 failures
- When initial condition of the joint is good
 - ---> No measurable impact

	EVOLUTION Impact is :	TDS Loss Variation (%)	ΔT variation $\Delta (\Delta T)$	Initial cond. VLF Tan δ @ 5 kV(X 10 ⁻³)	JOINT SAMPLE
h	Strong (=failure)	-	-	6165	02-X
	Strong (=failure)	-	-	359	01-Z
	Reduced signs of degradation	-51%	-6.9°C / -100%	241	21-Z
	Strong (=failure)	-46%	+0.6 °C / +15%	63	02-Y
11	Some	+355%	+0.1°C / +4%	19	04-X
Ρ	Strong (=failure)	+399%	+0.2°C / +100%	19	07-C
Ь	None	+2%	-	9.6	21-Y
	None	+4%	+0.0°C / +0%	7.7	04 - Y
	None	+13%	-	6.5	01-X
	None	-22%	-	6.4	03-Z
1	None	+13%	-	6.0	01-Y
	None	+10%	-	5.9	07-X
	None	+10%	-	5.9	07-B
V	None	+12%	-	4.7	03-X

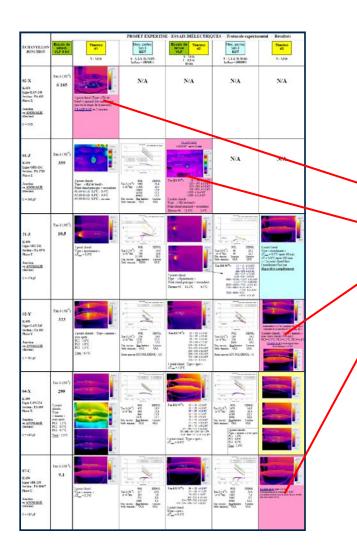

JOINT SAMPLE	Initial cond. VLF Tan 8 @ 5 kV(X 10 ⁻³)	ΔT variation $\Delta (\Delta T)$	TDS Loss Variation (%)	EVOLUTION Impact is :
02-X	6165	-	-	Strong (=failure)
01-Z	359	-	-	Strong (=failure)
21-Z	241	-6.9°C / -100%	-51%	Reduced signs of degradation
02-Y	63	+0.6 °C / +15%	-46%	Strong (=failure)
04-X	19	+0.1°C / +4%	+355%	Some
07-C	19	+0.2°C / +100%	+399%	Strong (=failure)
21-Y	9.6	-	+2%	None
04 - Y	7.7	+0.0°C / +0%	+4%	None
01-X	6.5	-	+13%	None
03-Z	6.4	-	-22%	None
01-Y	6.0	-	+13%	None
07-X	5.9	-	+10%	None
07-B	5.9	-	+10%	None
03-X	4.7	-	+12%	None

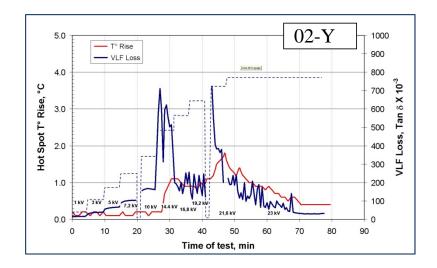
Impact of VLF withstand

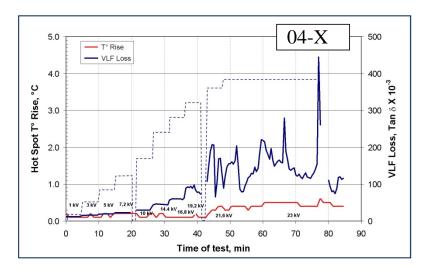
<u>Observations</u>: (<u>Particular</u>)

- 1 sample showing "reduced signs of degradation"
 - This sample had a particular "heat signature"
 - --> localized hot spot in the

"shoulder"


• Failures occurred at different steps in the procedure




Observations: (Particular)

OCCURENCES OF FAILURES

Failure 1: 1st time energized @ 1Uo
Failure 2: During VLF withstand
Failure 3: When re-energized @ 1Uo
Failure 4: When re-energized @ 1Uo

Impact of VLF withstand

Observations: (Particular)

UNEXPECTED LOSS BEHAVIOR DURING VLF MONITORED WITHSTAND

Dielectric loss show several huge quasi-instantaneous variations (increase or decrease)

7- RESULTS WRAP-UP & ISSUES

IMPACT OF PERFORMING VLF WITHSTAND TESTS...

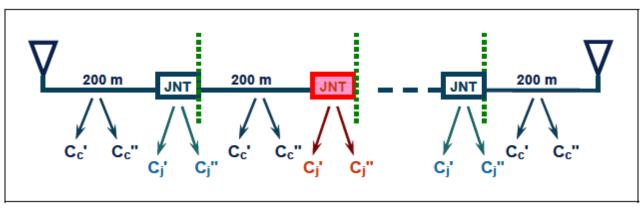
- On joints in good condition:
 --> No measurable effect
- On degraded joints of type A --> Some effect, but not that much
- On degraded joints of type B --> Significant effect: - Occurrence of failures - Erratic behavior of losses

ISSUES:

- Spot" type anomalies appear particularly vulnerable
- Clear indications that presence of water has a strong influence on joint insulation behavior

8- VLF DIAGNOSTIC INTERPRETATION: Application to a Cable System typical to HQD

DIELECTRIC LOSS FEATURES FOR SINGLE JOINTS:

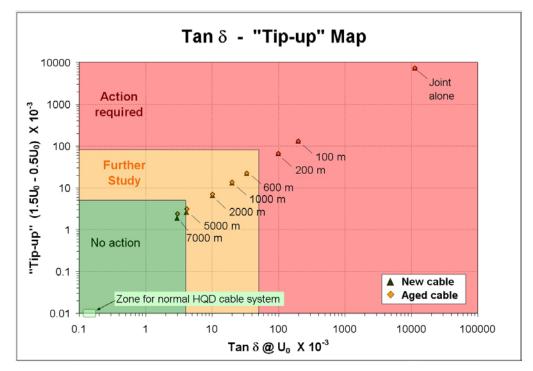

JOINT SAMPLE		an δ (X 10 RAMP-UP	Differential TD (Tip-Up)		
	0.5 U ₀	$1 U_0$	1.5 U ₀	1.6 U ₀	$[1.5U_0 - 0.5U_0]$
A - 06-A	8768	11265	16170	21294	7402
В - 02-Ү	100	532	370	90	270

ISSUE: How such VLF feature values would translate in the field, considering cable circuits with various lengths ?

8- VLF DIAGNOSTIC INTERPRETATION: Application to a Cable System typical to HQD

Configurations considered for the simulations:

One "bad" joint in a cable system


Overall loss calculation:

$$Tan \ \delta_{line} = \frac{\sum C''_{cable \ i} + \sum C''_{jct \ i}}{\sum C'_{cable \ i} + \sum C'_{jct \ i}} \qquad \text{Loss contributions}$$

8- VLF DIAGNOSTIC INTERPRETATION: Application to a Cable System typical to HQD

Simulation results for joint type A:

(Diagnostic criteria defined in IEEE 400.2¹ for PE-based insulation)

--> Cable length has a significant impact on VLF diagnostic outcome

(1) According to latest draft D9

9- SUMMARY

- Effect of performing VLF withstand tests is strongly dependent to the type (design) of joint and to the type of defect (e.g. heat anomaly pattern)
- Expected outcomes on joints are not straightforward --> multiple and complex phenomena are involved (e.g. effect of water)
- Further studies are required in order to allow a better understanding of these issues